Skip to main content

Advertisement

Log in

CD8+ T cells patrol HSV-1-infected trigeminal ganglia and prevent viral reactivation

  • Review
  • Published:
Journal of NeuroVirology Aims and scope Submit manuscript

Abstract

A hallmark of herpes viruses is their capacity to cause recurrent disease. Recurrences of herpes simplex virus (HSV)-1 disease do not result from reinfection from external sources, but rather from reactivation of virus that is maintained in a latent state in sensory neurons and periodically reactivates from latency to cause recurrent disease. Recent findings implicate HSV-specific CD8+ T cells in immune surveillance of HSV-1 latently infected sensory neurons in trigeminal ganglia (TG) and inhibition of HSV-1 reactivation from latency. This review summarizes recent findings regarding the characteristics of the TG-resident CD8+ T cell population and certain unique obstacles that might complicate the development of therapeutic vaccines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Allan RS, Waithman J, Bedoui S, Jones CM, Villadangos JA, Zhan Y, Lew AM, Shortman K, Heath WR, Carbone FR (2006) Migratory dendritic cells transfer antigen to a lymph node-resident dendritic cell population for efficient CTL priming. Immunity 25:153–162

    Article  PubMed  CAS  Google Scholar 

  • Chen W, Norbury CC, Cho Y, Yewdell JW, Bennink JR (2001) Immunoproteasomes shape immunodominance hierarchies of antiviral CD8+ T cells at the levels of T cell repertoire and presentation of viral antigens. J Exp Med 193:1319–1326

    Article  PubMed  CAS  Google Scholar 

  • Decman V, Kinchington PR, Harvey SAK, Hendricks RL (2005) Gamma interferon can block herpes simplex virus type 1 reactivation from latency, even in the presence of late gene expression. J Virol 79:10339–10347

    Article  PubMed  CAS  Google Scholar 

  • Farrell MJ, Dobson AT, Feldman LT (1991) Herpes simplex virus latency-associated transcript is a stable intron. Proc Natl Acad Sci 88:790–794

    Article  PubMed  CAS  Google Scholar 

  • Frank GM, Lepisto AJ, Freeman ML, Sheridan BS, Cherpes TL, Hendricks RL (2010) Early CD4+ T cell help prevents partial CD8+ T cell exhaustion and promotes maintenance of herpes simplex virus 1 latency. J Immunol 184:277–286

    Article  PubMed  CAS  Google Scholar 

  • Freeman ML, Sheridan BS, Bonneau RH, Hendricks RL (2007) Psychological stress compromises CD8+ T cell control of latent herpes simplex virus type 1 infections. J Immunol 179:322–328

    PubMed  CAS  Google Scholar 

  • Freeman ML, Lanzer KG, Cookenham T, Peters B, Sidney J, Wu T-T, Sun R, Woodland DL, Sette A, Blackman MA (2010) Two kinetic patterns of epitope-specific CD8 T-cell responses following murine gammaherpesvirus 68 infection. J Virol 84:2881–2892

    Article  PubMed  CAS  Google Scholar 

  • Gallar J, Tervo TMT, Neira W, Holopainen JM, Lamberg ME, Miñana F, Acosta MC, Belmonte C (2010) Selective changes in human corneal sensation associated with herpes simplex virus keratitis. Invest Ophthalmol Vis Sci 51:4516–4522

    Article  PubMed  Google Scholar 

  • Gebhardt T, Wakim LM, Eidsmo L, Reading PC, Heath WR, Carbone FR (2009) Memory T cells in nonlymphoid tissue that provide enhanced local immunity during infection with herpes simplex virus. Nat Immunol 10:524–530

    Article  PubMed  CAS  Google Scholar 

  • Gilden DH, Mahalingam R, Cohrs RJ, Tyler KL (2007) Herpes virus infections of the nervous system. Nat Clin Pract Neuro 3:82–94

    Article  CAS  Google Scholar 

  • Godowski PJ, Knipe DM (1986) Transcriptional control of herpesvirus gene expression: gene functions required for positive and negative regulation. Proc Natl Acad Sci 83:256–260

    Article  PubMed  CAS  Google Scholar 

  • Halford WP, Schaffer PA (2001) ICP0 is required for efficient reactivation of herpes simplex virus type 1 from neuronal latency. J Virol 75:3240–3249

    Article  PubMed  CAS  Google Scholar 

  • Hill A, Jugovic P, York I, Russ G, Bennink J, Yewdell J, Ploegh H, Johnson D (1995) Herpes simplex virus turns off the TAP to evade host immunity. Nature 375(6530):411–415

    Article  PubMed  CAS  Google Scholar 

  • Himmelein S, St Leger A, Knickelbein J, Rowe A, Freeman M, Hendricks R (2011) Circulating herpes simplex type 1 (HSV-1)-specific CD8+ T cells do not access HSV-1 latently infected trigeminal ganglia. Herpesviridae 2:5

    Article  PubMed  CAS  Google Scholar 

  • Hoshino Y, Pesnicak L, Cohen JI, Straus SE (2007) Rates of reactivation of latent herpes simplex virus from mouse trigeminal ganglia ex vivo correlate directly with viral load and inversely with number of infiltrating CD8+ T cells. J Virol 81:8157–8164

    Article  PubMed  CAS  Google Scholar 

  • Jiang X, Alami Chentoufi A, Hsiang C, Carpenter D, Osorio N, BenMohamed L, Fraser NW, Jones C, Wechsler SL (2011) The herpes simplex virus type 1 latency-associated transcript can protect neuron-derived C1300 and Neuro2A cells from granzyme B-induced apoptosis and CD8 T-cell killing. J Virol 85:2325–2332

    Article  PubMed  CAS  Google Scholar 

  • Kastrukoff LF, Lau AS, Takei F, Smyth MJ, Jones CM, Clarke SRM, Carbone FR (2010) Redundancy in the immune system restricts the spread of HSV-1 in the central nervous system (CNS) of C57BL/6 mice. Virology 400:248–258

    Article  PubMed  CAS  Google Scholar 

  • Kather A, Raftery MJ, Devi-Rao G, Lippmann J, Giese T, Sandri-Goldin RM, Schonrich G (2010) Herpes simplex virus type 1 (HSV-1)-induced apoptosis in human dendritic cells as a result of downregulation of cellular FLICE-inhibitory protein and reduced expression of HSV-1 antiapoptotic latency-associated transcript sequences. J Virol 84:1034–1046

    Article  PubMed  CAS  Google Scholar 

  • Khanna KM, Bonneau RH, Kinchington PR, Hendricks RL (2003) Herpes simplex virus-specific memory CD8+ T cells are selectively activated and retained in latently infected sensory ganglia. Immunity 18:593–603

    Article  PubMed  CAS  Google Scholar 

  • Knickelbein JE, Khanna KM, Yee MB, Baty CJ, Kinchington PR, Hendricks RL (2008) Noncytotoxic lytic granule-mediated CD8+ T cell inhibition of HSV-1 reactivation from neuronal latency. Science 322:268–271

    Article  PubMed  CAS  Google Scholar 

  • Knipe DM, Howley PM, Griffin DE (eds) (2007) Fields' virology. Kluwer, Philadelphia

    Google Scholar 

  • Kodukula P, Liu T, Rooijen NV, Jager MJ, Hendricks RL (1999) Macrophage control of herpes simplex virus type 1 replication in the peripheral nervous system. J Immunol 162:2895–2905

    PubMed  CAS  Google Scholar 

  • Kotturi MF, Peters B, Buendia-Laysa F Jr, Sidney J, Oseroff C, Botten J, Grey H, Buchmeier MJ, Sette A (2007) The CD8+ T-cell response to lymphocytic choriomeningitis virus involves the L antigen: uncovering new tricks for an old virus. J Virol 81:4928–4940

    Article  PubMed  CAS  Google Scholar 

  • Kotturi MF, Scott I, Wolfe T, Peters B, Sidney J, Cheroutre H, von Herrath MG, Buchmeier MJ, Grey H, Sette A (2008) Naive precursor frequencies and MHC binding rather than the degree of epitope diversity shape CD8+ T cell immunodominance. J Immunol 181:2124–2133

    PubMed  CAS  Google Scholar 

  • Kruse M, Rosorius O, Kratzer F, Stelz G, Kuhnt C, Schuler G, Hauber J, Steinkasserer A (2000) Mature dendritic cells infected with herpes simplex virus type 1 exhibit inhibited T-cell stimulatory capacity. J Virol 74:7127–7136

    Article  PubMed  CAS  Google Scholar 

  • Lee HK, Zamora M, Linehan MM, Iijima N, Gonzalez D, Haberman A, Iwasaki A (2009) Differential roles of migratory and resident DCs in T cell priming after mucosal or skin HSV-1 infection. J Exp Med 206:359–370

    Article  PubMed  CAS  Google Scholar 

  • Lekstrom-Himes JA, Pesnicak L, Straus SE (1998) The quantity of latent viral DNA correlates with the relative rates at which herpes simplex virus types 1 and 2 cause recurrent genital herpes outbreaks. J Virol 72:2760–2764

    PubMed  CAS  Google Scholar 

  • Lekstrom-Himes JA, LeBlanc RA, Pesnicak L, Godleski M, Straus SE (2000) Gamma interferon impedes the establishment of herpes simplex virus type 1 latent infection but has no impact on its maintenance or reactivation in mice. J Virol 74:6680–6683

    Article  PubMed  CAS  Google Scholar 

  • Liesegang TJMD (2001) Herpes simplex virus epidemiology and ocular importance. Cornea 20:1–13

    Article  PubMed  CAS  Google Scholar 

  • Liu T, Khanna KM, Chen X, Fink DJ, Hendricks RL (2000) CD8+ T cells can block herpes simplex virus type 1 (HSV-1) reactivation from latency in sensory neurons. J Exp Med 191:1459–1466

    Article  PubMed  CAS  Google Scholar 

  • Mikloska Z, Bosnjak L, Cunningham AL (2001) Immature monocyte-derived dendritic cells are productively infected with herpes simplex virus type 1. J Virol 75:5958–5964

    Article  PubMed  CAS  Google Scholar 

  • National Eye Institute (2010) Facts about the cornea and corneal disease. National Eye Institute, Bethesda

    Google Scholar 

  • Oseroff C, Peters B, Pasquetto V, Moutaftsi M, Sidney J, Panchanathan V, Tscharke DC, Maillere B, Grey H, Sette A (2008) Dissociation between epitope hierarchy and immunoprevalence in CD8 responses to vaccinia virus western reserve. J Immunol 180:7193–7202

    PubMed  CAS  Google Scholar 

  • Padgett DA, Sheridan JF, Dorne J, Berntson GG, Candelora J, Glaser R (1998) Social stress and the reactivation of latent herpes simplex virus type 1. Proc Natl Acad Sci USA 95:7231–7235

    Article  PubMed  CAS  Google Scholar 

  • Perng G-C, Jones C, Ciacci-Zanella J, Stone M, Henderson G, Yukht A, Slanina SM, Hofman FM, Ghiasi H, Nesburn AB, Wechsler SL (2000) Virus-induced neuronal apoptosis blocked by the herpes simplex virus latency-associated transcript. Science 287:1500–1503

    Article  PubMed  CAS  Google Scholar 

  • Preston CM (1979) Control of herpes simplex virus type 1 mRNA synthesis in cells infected with wild-type virus or the temperature-sensitive mutant tsK. J Virol 29:275–284

    PubMed  CAS  Google Scholar 

  • Rajčáni J, Andrea V, Ingeborg R (2004) Peculiarities of herpes simplex virus (HSV) transcription: an overview. Virus Genes 28:293–310

    Article  PubMed  Google Scholar 

  • Salvucci L, Bonneau R, Tevethia S (1995) Polymorphism within the herpes simplex virus (HSV) ribonucleotide reductase large subunit (ICP6) confers type specificity for recognition by HSV type 1-specific cytotoxic T lymphocytes. J Virol 69:1122–1131

    PubMed  CAS  Google Scholar 

  • Sheridan BS, Cherpes TL, Urban J, Kalinski P, Hendricks RL (2009) Reevaluating the CD8 T-cell response to herpes simplex virus type 1: involvement of CD8 T cells reactive to subdominant epitopes. J Virol 83:2237–2245

    Article  PubMed  CAS  Google Scholar 

  • Shoji H, Azuma K, Nishimura Y, Fuimoto H, Sugita Y, Yoshito E (2002) Acute viral encephalitis: the recent progress. Intern Med 41:420–428

    Article  PubMed  Google Scholar 

  • Smith CM, Belz GT, Wilson NS, Villadangos JA, Shortman K, Carbone FR, Heath WR (2003) Cutting edge: conventional CD8α + dendritic cells are preferentially involved in CTL priming after footpad infection with herpes simplex virus-1. J Immunol 170:4437–4440

    PubMed  CAS  Google Scholar 

  • St. Leger AJ, Peters B, Sidney J, Sette A, Hendricks RL (2011) Defining the herpes simplex virus-specific CD8+ T cell repertoire in C57BL/6 mice. J Immunol 186:3927–3933

    Article  PubMed  CAS  Google Scholar 

  • Tal-Singer R, Lasner T, Podrzucki W, Skokotas A, Leary J, Berger S, Fraser N (1997) Gene expression during reactivation of herpes simplex virus type 1 from latency in the peripheral nervous system is different from that during lytic infection of tissue cultures. J Virol 71:5268–5276

    PubMed  CAS  Google Scholar 

  • Theil D, Derfuss T, Paripovic I, Herberger S, Meinl E, Schueler O, Strupp M, Arbusow V, Brandt T (2003) Latent herpesvirus infection in human trigeminal ganglia causes chronic immune response. Am J Pathol 163:2179–2184

    Article  PubMed  CAS  Google Scholar 

  • Thompson RL, Sawtell NM (2001) Herpes simplex virus type 1 latency-associated transcript gene promotes neuronal survival. J Virol 75:6660–6675

    Article  PubMed  CAS  Google Scholar 

  • Verjans GMGM, Hintzen RQ, van Dun JM, Poot A, Milikan JC, Laman JD, Langerak AW, Kinchington PR, Osterhaus ADME (2007) Selective retention of herpes simplex virus-specific T cells in latently infected human trigeminal ganglia. Proc Natl Acad Sci 104:3496–3501

    Article  PubMed  CAS  Google Scholar 

  • Wakim LM, Woodward-Davis A, Bevan MJ (2010) Memory T cells persisting within the brain after local infection show functional adaptations to their tissue of residence. Proc Natl Acad Sci 107:17872–17879

    Article  PubMed  CAS  Google Scholar 

  • Watson RJ, Clements JB (1980) A herpes simplex virus type 1 function continuously required for early and late virus RNA synthesis. Nature 285:329–330

    Article  PubMed  CAS  Google Scholar 

  • Yewdell JW (2006) Confronting complexity: real-world immunodominance in antiviral CD8+ T cell responses. Immunity 25:533–543

    Article  PubMed  CAS  Google Scholar 

  • Zhu J, Koelle DM, Cao J, Vazquez J, Huang ML, Hladik F, Wald A, Corey L (2007) Virus-specific CD8+ T cells accumulate near sensory nerve endings in genital skin during subclinical HSV-2 reactivation. J Exp Med 204:595–603

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Kira Lathrop for her assistance in creating the figure for this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert L. Hendricks.

Rights and permissions

Reprints and permissions

About this article

Cite this article

St. Leger, A.J., Hendricks, R.L. CD8+ T cells patrol HSV-1-infected trigeminal ganglia and prevent viral reactivation. J. Neurovirol. 17, 528–534 (2011). https://doi.org/10.1007/s13365-011-0062-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13365-011-0062-1

Keywords

Navigation