Skip to main content
Log in

First evidence of autotriploidization in sterlet (Acipenser ruthenus)

  • Animal Genetics • Original Paper
  • Published:
Journal of Applied Genetics Aims and scope Submit manuscript

Abstract

Polyploidization has played an important role in vertebrate evolution. Acipenseridae bring clear examples of polyploidy ancestry and, also, polyploidization seems to be an ongoing process in these fishes. In the present study, the genetic origin of six triploid specimens morphologically determined as Acipenser ruthenus from commercial aquaculture was analyzed using a combination of mitochondrial and nuclear markers. A further five successive statistical analyses including median joining of mitochondrial DNA control region sequences, principal coordinate analysis (PCA), factorial correspondence analysis (FCA), STRUCTURE assignation, and NewHybrids status determination for microsatellite data were applied for the clarification of the origin of one extra chromosome set added in these triploids genomes. Although interspecific hybridization had been suggested as a source of these triploids, the statistical analyses showed that the investigated triploids originate from autotriploidization rather than from interspecific hybridization. Therefore, we conclude that a combination of molecular markers with suitable statistical analyses should be used to verify the origin of unusual ploidy level. Evidently, such an approach is critically essential in aquaculture, where interspecific hybridization is very common and usually detected by changes in ploidy levels only.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Allendorf FW, Thorgaard GH (1984) Polyploidy and the evolution of salmonid fishes. In: Ryman N, Utter F (eds) The evolutionary genetics of fishes. University of Washington Press, Seattle, pp 333–344

    Google Scholar 

  • Anderson EC, Thompson EA (2002) A model-based method for identifying species hybrids using multilocus genetic data. Genetics 160:1217–1229

    PubMed  CAS  Google Scholar 

  • Bandelt H-J, Forster P, Röhl A (1999) Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol 16:37–48

    Article  PubMed  CAS  Google Scholar 

  • Belkhir K, Borsa P, Chikhi L, Raufaste N, Bonhomme F (2004) GENETIX 4.05, logiciel sous Windows TM pour la génétique des populations. Laboratoire Génome, Populations, Interactions, CNRS UMR 5000, Université de Montpellier II, Montpellier, France

  • Bemis WE, Findeis EK, Grande L (1997) An overview of Acipenseriformes. Environ Biol Fish 48:25–71. doi:10.1023/A:1007370213924

    Article  Google Scholar 

  • Birstein VJ, Bemis WE, Waldman JR (1997) The threatened status of acipenseriform species: a summary. Environ Biol Fish 48:427–435. doi:10.1023/A:1007382724251

    Article  Google Scholar 

  • Birstein VJ, Doukakis P, DeSalle R (2000) Polyphyly of mtDNA lineages in the Russian sturgeon, Acipenser gueldenstaedtii: forensic and evolutionary implications. Conserv Genet 1:81–88

    Article  CAS  Google Scholar 

  • Blacklidge KH, Bidwell CA (1993) Three ploidy levels indicated by genome quantification in Acipenseriformes of North America. J Hered 84:427–430

    Google Scholar 

  • Borin LA, Martins-Santos IC, Oliveira C (2002) A natural triploid in Trichomycterus davisi (Siluriformes, Trichomycteridae): mitotic and meiotic characterization by chromosome banding and synaptonemal complex analyses. Genetica 115:253–258

    Article  PubMed  Google Scholar 

  • Bronzi P, Rosenthal H, Arlati G, Williot P (1999) A brief overview on the status and prospects of sturgeon farming in Western and Central Europe. J Appl Ichthyol 15:224–227. doi:10.1111/j.1439-0426.1999.tb00239.x

    Article  Google Scholar 

  • Centofante L, Bertollo LAC, Moreira-Filho O (2001) Comparative cytogenetics among sympatric species of Characidium (Pisces, Characiformes). Diversity analysis with the description of a ZW sex chromosome system and natural triploidy. Caryologia 54(3):253–260

    Google Scholar 

  • De Almeida Toledo LF, Foresti F, De Toledo Filho S (1985) Spontaneous triploidy and NOR activity in Eigenmannia sp. (Pisces, Sternopygidae) from the Amazon basin. Genetica 66:85–88. doi:10.1007/BF00139713

    Article  Google Scholar 

  • Dettlaff TA, Ginsburg AS, Schmalhausen OI (1993) Sturgeon fishes. Developmental biology and aquaculture. Springer, Berlin

    Book  Google Scholar 

  • Drummond AJ, Ashton B, Buxton S, Cheung M, Cooper A, Duran C, Field M, Heled J, Kearse M, Markowitz S, Moir R, Stones-Havas S, Sturrock S, Thierer T, Wilson A (2011) Geneious v5.4. Available from: http://www.geneious.com

  • Dudu A, Suciu R, Paraschiv M, Georgescu SE, Costache M, Berrebi P (2011) Nuclear markers of Danube sturgeons hybridization. Int J Mol Sci 12:6796–6809. doi:10.3390/ijms12106796

    Article  PubMed  CAS  Google Scholar 

  • Fauaz G, Vicente VE, Moreira-Filho O (1994) Natural triploidy and B chromosomes in the neotropical fish genus Astyanax (Characidae). Rev Brasil Genet 17(2):157–163

    Google Scholar 

  • Ferris SD, Whitt GS (1980) Genetic variability in species with extensive gene duplication: the tetraploid catostomid fishes. Am Nat 115(5):650–666. doi:10.1086/283590

    Article  Google Scholar 

  • Flajšhans M, Vajcová V (2000) Odd ploidy levels in sturgeon suggest a backcross of interspecific hexaploid sturgeon hybrids to evolutionary tetraploid and/or octaploid parental species. Folia Zool 49:133–138

    Google Scholar 

  • Fontana F, Congiu L, Mudrak VA, Quattro JM, Smith TIJ, Ware K, Doroshov SI (2008) Evidence of hexaploid karyotype in shortnose sturgeon. Genome 51:113–119. doi:10.1139/G07-112

    Article  PubMed  CAS  Google Scholar 

  • Fopp-Bayat D (2007) Spontaneous gynogenesis in Siberian sturgeon Acipenser baeri Brandt. Aquac Res 38:776–779. doi:10.1111/j.1365-2109.2007.01739.x

    Article  Google Scholar 

  • Fopp-Bayat D, Woznicki P (2007) Spontaneous and induced gynogenesis in sterlet Acipenser ruthenus Brandt. Caryologia 60(4):315–318

    Google Scholar 

  • Giuliano-Caetano L, Bertollo LAC (1990) Karyotypic variability in Hoplerythrinus unitaeniatus (Pisces, Characiformes, Erythrinidae). II. Occurrence of natural triploidy. Rev Brasil Genet 13(2):231–237

    Google Scholar 

  • Gorshkova G, Gorshkov S, Gordin H, Knibb W (1996) Karyological studies in hybrids of beluga Huso huso (L.) and the Russian sturgeon Acipenser güldenstädti Brandt. Israeli J Aquacult Bamidgeh 48(1):35–39

    Google Scholar 

  • Katoh K, Misawa K, Kuma K, Miyata T (2002) MAFFT: A novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res 30:3059–3066

    Article  PubMed  CAS  Google Scholar 

  • King TL, Lubinski BA, Spidle AP (2001) Microsatellite DNA variation in Atlantic sturgeon (Acipenser oxyrinchus oxyrinchus) and cross-species amplification in the Acipenseridae. Conserv Genet 2:103–119. doi:10.1023/A:1011895429669

    Article  CAS  Google Scholar 

  • Linhart O, Rodina M, Flajšhans M, Mavrodiev N, Nebesarova J, Gela D, Kocour M (2006) Studies on sperm of diploid and triploid tench, Tinca tinca (L.). Aquac Int 14:9–25

    Article  Google Scholar 

  • Ludwig A (2008) Identification of Acipenseriformes species in trade. J Appl Ichthyol 24:2–19. doi:10.1111/j.1439-0426.2008.01085.x

    Article  Google Scholar 

  • Ludwig A, Debus L, Jenneckens I (2002) A molecular approach for trading control of black caviar. Int Rev Hydrobiol 87:661–674. doi:10.1002/1522-2632(200211)87:5/6<661::AID-IROH661>3.0.CO;2-S

    Article  CAS  Google Scholar 

  • Ludwig A, Lippold S, Debus L, Reinartz R (2009) First evidence of hybridization between endangered sterlets (Acipenser ruthenus) and exotic Siberian sturgeons (Acipenser baerii) in the Danube River. Biol Invasions 11:753–760. doi:10.1007/s10530-008-9289-z

    Article  Google Scholar 

  • Malacrida ACCP (2002) Caracterísiticas cromossômicas em algumas espécies de Astyanax (Characidae, Tetragonopterinae) da bacia do rio Tibagi/PR. Dissertação de Mestrado, Universidade Estadual de Londrina, Londrina, PR, Brasil, 95 pp

  • May B, Krueger CC, Kincaid HL (1997) Genetic variation at microsatellite loci in sturgeon: primer sequence homology in Acipenser and Scaphirhynchus. Can J Fish Aquat Sci 54:1542–1547. doi:10.1139/cjfas-54-7-1542

    Article  CAS  Google Scholar 

  • McQuown EC, Sloss BL, Sheehan RJ, Rodzen J, Tranah GJ, May B (2000) Microsatellite analysis of genetic variation in sturgeon: new primer sequences for Scaphirhynchus and Acipenser. Trans Am Fish Soc 129:1380–1388. doi:10.1577/1548-8659(2000)129<1380:MAOGVI>2.0.CO;2

    Article  CAS  Google Scholar 

  • Morelli S, Bertollo AC, Moreira-Filho O (1983) Cytogenetics considerations on the genus Astyanax (Pisces, Characidae). II. Occurrence of the natural triploidy. Caryologia 36(3):245–250

    Google Scholar 

  • Mugue NS, Barmintseva AE, Rastorguev SM, Mugue VN, Barminstev VA (2008) Polymorphism of the mitochondrial DNA control region in eight sturgeon species and development of a system for DNA-based species identification. Russ J Genet 44:793–798. doi:10.1134/S1022795408070065

    Article  CAS  Google Scholar 

  • Nikolyukin NI (1964) Some observations on the histological structure of the gonads of sturgeon hybrids. Trudy VNIRO 55:145–157 (in Russian)

    Google Scholar 

  • Omoto N, Maebayashi M, Adachi S, Arai K, Yamauchi K (2005) The influence of oocyte maturational stage on hatching and triploidy rates in hybrid (bester) sturgeon, Huso huso × Acipenser ruthenus. Aquaculture 245:287–294. doi:10.1016/j.aquaculture.2004.11.008

    Article  Google Scholar 

  • Peakall R, Smouse PE (2006) GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295. doi:10.1111/j.1471-8286.2005.01155.x

    Article  Google Scholar 

  • Pikitch EK, Doukakis P, Lauck L, Chakrabarty P, Erickson DL (2005) Status, trends and management of sturgeon and paddlefish fisheries. Fish Fish 6:233–265. doi:10.1111/j.1467-2979.2005.00190.x

    Article  Google Scholar 

  • Pravda D, Svobodová Z (2003) Haematology of fishes. In: Doubek J, Bouda J, Doubek M, Fürll M, Knotková Z, Pejřilová S (eds) Veterinary haematology. Noviko, Brno, pp 381–397 (in Czech)

    Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    PubMed  CAS  Google Scholar 

  • Pšenicka M, Rodina M, Linhart O (2010) Ultrastructural study on the fertilisation process in sturgeon (Acipenser), function of acrosome and prevention of polyspermy. Anim Reprod Sci 117:147–154. doi:10.1016/j.anireprosci.2009.03.013

    Article  PubMed  Google Scholar 

  • Timoshkina NN, Barmintseva AE, Usatov AV, Mugue NS (2009) Intraspecific genetic polymorphism of Russian sturgeon Acipenser gueldenstaedtii. Russ J Genet 45:1098–1106

    Article  CAS  Google Scholar 

  • Van Eenennaam AL, Van Eenennaam JP, Medrano JF, Doroshov SI (1996) Rapid verification of meiotic gynogenesis and polyploidy in white sturgeon (Acipenser transmontanus Richardson). Aquaculture 147:177–189. doi:10.1016/S0044-8486(96)01369-5

    Article  Google Scholar 

  • Vasiľev VP (2009) Mechanisms of polyploid evolution in fish: polyploidy in sturgeons. In: Carmona R, Domezain A, García-Gallego M, Hernando JA, Rodríguez F, Ruiz-Rejón M (eds) Biology, conservation and sustainable development of sturgeons. Springer Science+Business Media BV, pp 97–117. doi: 10.1007/978-1-4020-8437-9_6

  • Venere PC, Galetti PM Jr (1985) Natural triploidy and chromosome B in the fish Curimata modesta (Curimatidae, Characiformes). Rev Bras Genet VIII(4):681–687

    Google Scholar 

  • Zhou H, Fujimoto T, Adachi S, Yamaha E, Arai K (2011) Genome size variation estimated by flow cytometry in Acipenser mikadoi, Huso dauricus in relation to other species of Acipenseriformes. J Appl Ichthyol 27:484–491. doi:10.1111/j.1439-0426.2010.01648.x

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The results in this paper were supported, in part, by projects CENAKVA CZ.1.05/2.1.00/01.0024, GAJU 046/2010/Z, and GACR 523/08/0824.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Havelka.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Table 1

Multilocus genotypes of the four sturgeon species (A. ruthenus, A. baerii, A. gueldenstaedtii, and H. huso), their classification based on genotype inspection, and their assignment probabilities to six genotype classes obtained with the NewHybrids software (Anderson and Thompson 2002) (XLS 26 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Havelka, M., Hulák, M., Rodina, M. et al. First evidence of autotriploidization in sterlet (Acipenser ruthenus). J Appl Genetics 54, 201–207 (2013). https://doi.org/10.1007/s13353-013-0143-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13353-013-0143-3

Keywords

Navigation