Skip to main content

Advertisement

Log in

Lipid-based pulmonary delivery system: a review and future considerations of formulation strategies and limitations

  • Review Article
  • Published:
Drug Delivery and Translational Research Aims and scope Submit manuscript

Abstract

Inhalation therapy of lipid-based carriers has great potential in direct target towards the root of respiratory diseases, which make them superior over other drug deliveries. With the successful entry of lipid carriers into the target cells, drugs can be absorbed in a sustained release manner and yield extended medicinal effects. Nevertheless, translation of inhalation therapy from laboratory to clinic especially in drug delivery remains a key challenge to the formulators. An ideal drug vehicle should safeguard the drugs from any premature elimination, facilitate cellular uptake, and promote maximum drug absorption with negligible toxicity. Despite knowing that lung treatment can be done via systemic delivery, pulmonary administration is capable of enhancing drug retention within the lungs, while minimizing systemic toxicity with local targeting. Current inhalation therapy of lipid-based carriers can be administered either intratracheally or intranasally to reach deep lung. However, the complex dimensions of lung architectural and natural defense mechanism poise major barriers towards targeted pulmonary delivery. Delivery systems have to be engineered in a way to tackle various diseases according to their biological conditions. This review highlights on the developmental considerations of lipid-based delivery systems cater for the pulmonary intervention of different lung illnesses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Li S-D, Huang L. Pharmacokinetics and biodistribution of nanoparticles. Mol Pharm. 2008;5(4):496–504.

    Article  PubMed  CAS  Google Scholar 

  2. Kim CS, Duncan B, Creran B, Rotello VM. Triggered nanoparticles as therapeutics. Nano Today. 2013;8(4):439–47.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Mirkin CA, et al. Nanotechnology-based precision tools for the detection and treatment of cancer. Basel: Springer International Publishing; 2015.

    Book  Google Scholar 

  4. Bennet C. Theatri Tabidorum Vestibulum: Seu Exercitationes Dianoeticæ cum Historiis et Experimentis Demonstrativis. London: Newcomb; 1654.

    Google Scholar 

  5. Mudge J. A radical and expeditious cure for a recent catarrhous cough. London: Allen; 1778.

    Google Scholar 

  6. Misra A, Hickey AJ, Rossi C, Borchard G, Terada H, Makino K, et al. Inhaled drug therapy for treatment of tuberculosis. Tuberculosis. 2011;91(1):71–81.

    Article  PubMed  CAS  Google Scholar 

  7. Barnes PJ. New therapies for asthma: is there any progress? Trends Pharmacol Sci. 2010;31(7):335–43.

    Article  PubMed  CAS  Google Scholar 

  8. Heijerman H, Westerman E, Conway S, Touw D, Döring G, Consensus Working Group. Inhaled medication and inhalation devices for lung disease in patients with cystic fibrosis: a European consensus. J Cyst Fibros. 2009;8(5):295–315.

    Article  PubMed  CAS  Google Scholar 

  9. Mäkelä MJ, Backer V, Hedegaard M, Larsson K. Adherence to inhaled therapies, health outcomes and costs in patients with asthma and COPD. Respir Med. 2013;107(10):1481–90.

    Article  PubMed  Google Scholar 

  10. Rubin BK, Williams RW. Delivering therapy to the cystic fibrosis lung. In: Hodson and Geddes’ cystic fibrosis. 4th ed: CRC Press; 2015. p. 271–89.

  11. Tseng C-L, et al. Development of gelatin nanoparticles with biotinylated EGF conjugation for lung cancer targeting. Biomaterials. 2007;28(27):3996–4005.

    Article  PubMed  CAS  Google Scholar 

  12. Roa WH, Azarmi S, al-Hallak MHDK, Finlay WH, Magliocco AM, Löbenberg R. Inhalable nanoparticles, a non-invasive approach to treat lung cancer in a mouse model. J Control Release. 2011;150(1):49–55.

    Article  PubMed  CAS  Google Scholar 

  13. Kim I, Byeon HJ, Kim TH, Lee ES, Oh KT, Shin BS, et al. Doxorubicin-loaded highly porous large PLGA microparticles as a sustained- release inhalation system for the treatment of metastatic lung cancer. Biomaterials. 2012;33(22):5574–83.

    Article  PubMed  CAS  Google Scholar 

  14. Laouini A, Andrieu V, Vecellio L, Fessi H, Charcosset C. Characterization of different vitamin E carriers intended for pulmonary drug delivery. Int J Pharm. 2014;471(1–2):385–90.

    Article  PubMed  CAS  Google Scholar 

  15. Khadka P, Ro J, Kim H, Kim I, Kim JT, Kim H, et al. Pharmaceutical particle technologies: an approach to improve drug solubility, dissolution and bioavailability. Asian Journal of Pharmaceutical Sciences. 2014;9(6):304–16.

    Article  Google Scholar 

  16. Patlolla RR, Chougule M, Patel AR, Jackson T, Tata PNV, Singh M. Formulation, characterization and pulmonary deposition of nebulized celecoxib encapsulated nanostructured lipid carriers. J Control Release. 2010;144(2):233–41.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Taratula O, Kuzmov A, Shah M, Garbuzenko OB, Minko T. Nanostructured lipid carriers as multifunctional nanomedicine platform for pulmonary co-delivery of anticancer drugs and siRNA. J Control Release. 2013;171(3):349–57.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Gangadhar KN, Adhikari K, Srichana T. Synthesis and evaluation of sodium deoxycholate sulfate as a lipid drug carrier to enhance the solubility, stability and safety of an amphotericin B inhalation formulation. Int J Pharm. 2014;471(1–2):430–8.

    Article  PubMed  CAS  Google Scholar 

  19. Nahar K, Gupta N, Gauvin R, Absar S, Patel B, Gupta V, et al. In vitro, in vivo and ex vivo models for studying particle deposition and drug absorption of inhaled pharmaceuticals. Eur J Pharm Sci. 2013;49(5):805–18.

    Article  PubMed  CAS  Google Scholar 

  20. Kobayashi H, Kanoh S, Motoyoshi K, Aida S. Diffuse lung disease caused by cotton fibre inhalation but distinct from byssinosis. Thorax. 2004;59(12):1095–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Su W-C, Cheng YS. Deposition of fiber in a human airway replica. J Aerosol Sci. 2006;37(11):1429–41.

    Article  CAS  Google Scholar 

  22. Koullapis P, et al. Particle deposition in a realistic geometry of the human conducting airways: effects of inlet velocity profile, inhalation flowrate and electrostatic charge. J Biomech. 2016;49(11):2201–12.

    Article  PubMed  CAS  Google Scholar 

  23. Demoly P, Hagedoorn P, de Boer AH, Frijlink HW. The clinical relevance of dry powder inhaler performance for drug delivery. Respir Med. 2014;108(8):1195–203.

    Article  PubMed  Google Scholar 

  24. Sturm R. Clearance of carbon nanotubes in the human respiratory tract—a theoretical approach. Annals of Translational Medicine. 2014;2(5):46.

    PubMed  PubMed Central  Google Scholar 

  25. Intra P, Tippayawong N. Brownian diffusion effect on nanometer aerosol classification in electrical mobility spectrometer. Korean J Chem Eng. 2009;26(1):269–76.

    Article  CAS  Google Scholar 

  26. Tsuda A, Henry FS, Butler JP. Particle transport and deposition: basic physics of particle kinetics. Comprehensive Physiology. 2013;3(4):437–71.

    Google Scholar 

  27. Darquenne C. Aerosol deposition in the human lung in reduced gravity. Journal of Aerosol Medicine and Pulmonary Drug Delivery. 2014;27(3):170–7.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Hussain M, Madl P, Khan A. Lung deposition predictions of airborne particles and the emergence of contemporary diseases. Part I. Health. 2011;2(2):51–9.

    Google Scholar 

  29. Kwok PCL, Glover W, Chan HK. Electrostatic charge characteristics of aerosols produced from metered dose inhalers. J Pharm Sci. 2005;94(12):2789–99.

    Article  PubMed  CAS  Google Scholar 

  30. Xi J, Si X, Longest W. Electrostatic charge effects on pharmaceutical aerosol deposition in human nasal–laryngeal airways. Pharmaceutics. 2014;6(1):26–35.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Ali M, Reddy RN, Mazumder MK. Electrostatic charge effect on respirable aerosol particle deposition in a cadaver based throat cast replica. J Electrost. 2008;66(7):401–6.

    Article  Google Scholar 

  32. Ibrahim M, Verma R, Garcia-Contreras L. Inhalation drug delivery devices: technology update. Medical Devices (Auckland, NZ). 2015;8:131.

    CAS  Google Scholar 

  33. Paranjpe M, Müller-Goymann CC. Nanoparticle-mediated pulmonary drug delivery: a review. Int J Mol Sci. 2014;15(4):5852–73.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Smith DM, Simon JK, Baker JR Jr. Applications of nanotechnology for immunology. Nat Rev Immunol. 2013;13(8):592–605.

    Article  PubMed  CAS  Google Scholar 

  35. Schwab M, Sax G, Schulze S, Winter G. Studies on the lipase induced degradation of lipid based drug delivery systems. J Control Release. 2009;140(1):27–33.

    Article  PubMed  CAS  Google Scholar 

  36. Li M, Zhu L, Liu B, du L, Jia X, Han L, et al. Tea tree oil nanoemulsions for inhalation therapies of bacterial and fungal pneumonia. Colloids Surf B: Biointerfaces. 2016;141:408–16.

    Article  PubMed  CAS  Google Scholar 

  37. Zhu L, Li M, Dong J, Jin Y. Dimethyl silicone dry nanoemulsion inhalations: formulation study and anti-acute lung injury effect. Int J Pharm. 2015;491(1–2):292–8.

    Article  PubMed  CAS  Google Scholar 

  38. Wei-hong T, Min-chang G, Zhen X, Jie S. Pharmacological and pharmacokinetic studies with vitamin D-loaded nanoemulsions in asthma model. Inflammation. 2014;37(3):723–8.

    Article  PubMed  CAS  Google Scholar 

  39. Nesamony J, Kalra A, Majrad MS, Boddu SHS, Jung R, Williams FE, et al. Development and characterization of nanostructured mists with potential for actively targeting poorly water-soluble compounds into the lungs. Pharm Res. 2013;30(10):2625–39.

    Article  PubMed  CAS  Google Scholar 

  40. Onoue S, Sato H, Ogawa K, Kojo Y, Aoki Y, Kawabata Y, et al. Inhalable dry-emulsion formulation of cyclosporine A with improved anti-inflammatory effects in experimental asthma/COPD-model rats. Eur J Pharm Biopharm. 2012;80(1):54–60.

    Article  PubMed  CAS  Google Scholar 

  41. Nasr M, Nawaz S, Elhissi A. Amphotericin B lipid nanoemulsion aerosols for targeting peripheral respiratory airways via nebulization. Int J Pharm. 2012;436(1–2):611–6.

    Article  PubMed  CAS  Google Scholar 

  42. Amani A, York P, Chrystyn H, Clark BJ. Evaluation of a nanoemulsion-based formulation for respiratory delivery of budesonide by nebulizers. AAPS PharmSciTech. 2010;11(3):1147–51.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Asmawi AA, et al. Excipient selection and aerodynamic characterization of nebulized lipid-based nanoemulsion loaded with docetaxel for lung cancer treatment. Drug Delivery and Translational Research. 2018;

  44. Courrier HM, Vandamme TF, Krafft MP. Reverse water-in-fluorocarbon emulsions and microemulsions obtained with a fluorinated surfactant. Colloids Surf A Physicochem Eng Asp. 2004;244(1–3):141–8.

    Article  CAS  Google Scholar 

  45. Sommerville ML, Cain JB, Johnson CS Jr, Hickey AJ. Lecithin inverse microemulsions for the pulmonary delivery of polar compounds utilizing dimethylether and propane as propellants. Pharm Dev Technol. 2000;5(2):219–30.

    Article  PubMed  CAS  Google Scholar 

  46. Sommerville ML, Johnson CS Jr, Cain JB, Rypacek F, Hickey AJ. Lecithin microemulsions in dimethyl ether and propane for the generation of pharmaceutical aerosols containing polar solutes. Pharm Dev Technol. 2002;7(3):273–88.

    Article  PubMed  CAS  Google Scholar 

  47. Sommerville ML, Hickey AJ. Aerosol generation by metered-dose inhalers containing dimethyl ether/propane inverse microemulsions. AAPS PharmSciTech. 2003;4(4):455–61.

    Article  PubMed Central  Google Scholar 

  48. Ye T, Yu J, Luo Q, Wang S, Chan HK. Inhalable clarithromycin liposomal dry powders using ultrasonic spray freeze drying. Powder Technol. 2017;305:63–70.

    Article  CAS  Google Scholar 

  49. Cipolla D, Blanchard J, Gonda I. Development of liposomal ciprofloxacin to treat lung infections. Pharmaceutics. 2016;8(1):6.

    Article  PubMed Central  Google Scholar 

  50. Gandhi M, Pandya T, Gandhi R, Patel S, Mashru R, Misra A, et al. Inhalable liposomal dry powder of gemcitabine-HCl: formulation, in vitro characterization and in vivo studies. Int J Pharm. 2015;496(2):886–95.

    Article  PubMed  CAS  Google Scholar 

  51. Nahar K, Absar S, Patel B, Ahsan F. Starch-coated magnetic liposomes as an inhalable carrier for accumulation of fasudil in the pulmonary vasculature. Int J Pharm. 2014;464(1):185–95.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. de Jesus Valle M, et al. Pulmonary disposition of vancomycin nebulized as lipid vesicles in rats. The Journal of Antibiotics. 2013;66(8):447–51.

    Article  PubMed  CAS  Google Scholar 

  53. Bai S, Ahsan F. Inhalable liposomes of low molecular weight heparin for the treatment of venous thromboembolism. J Pharm Sci. 2010;99(11):4554–64.

    Article  PubMed  CAS  Google Scholar 

  54. Garbuzenko OB, Saad M, Betigeri S, Zhang M, Vetcher AA, Soldatenkov VA, et al. Intratracheal versus intravenous liposomal delivery of siRNA, antisense oligonucleotides and anticancer drug. Pharm Res. 2009;26(2):382–94.

    Article  PubMed  CAS  Google Scholar 

  55. Esmaeili M, Aghajani M, Abbasalipourkabir R, Amani A. Budesonide-loaded solid lipid nanoparticles for pulmonary delivery: preparation, optimization, and aerodynamic behavior. Artificial Cells, Nanomedicine, and Biotechnology. 2016;44(8):1964–71.

    Article  PubMed  CAS  Google Scholar 

  56. Ji P, et al. Naringenin-loaded solid lipid nanoparticles: preparation, controlled delivery, cellular uptake, and pulmonary pharmacokinetics. Drug Design, Development and Therapy. 2016;10:911.

    PubMed  PubMed Central  CAS  Google Scholar 

  57. Ezzati Nazhad Dolatabadi J, Hamishehkar H, Valizadeh H. Development of dry powder inhaler formulation loaded with alendronate solid lipid nanoparticles: solid-state characterization and aerosol dispersion performance. Drug Dev Ind Pharm. 2015;41(9):1431–7.

    Article  PubMed  CAS  Google Scholar 

  58. Varshosaz J, Taymouri S, Hassanzadeh F, Javanmard SH, Rostami M. Self-assembly micelles with lipid core of cholesterol for docetaxel delivery to B16F10 melanoma and HepG2 cells. Journal of Liposome Research. 2015;25(2):157–65.

    Article  PubMed  CAS  Google Scholar 

  59. Videira M, Almeida AJ, Fabra À. Preclinical evaluation of a pulmonary delivered paclitaxel-loaded lipid nanocarrier antitumor effect. Nanomedicine. 2012;8(7):1208–15.

    Article  PubMed  CAS  Google Scholar 

  60. Li Y-Z, Sun X, Gong T, Liu J, Zuo J, Zhang ZR. Inhalable microparticles as carriers for pulmonary delivery of thymopentin-loaded solid lipid nanoparticles. Pharm Res. 2010;27(9):1977–86.

    Article  PubMed  CAS  Google Scholar 

  61. Pardeike J, Weber S, Haber T, Wagner J, Zarfl HP, Plank H, et al. Development of an Itraconazole-loaded nanostructured lipid carrier (NLC) formulation for pulmonary application. Int J Pharm. 2011;419(1):329–38.

    Article  PubMed  CAS  Google Scholar 

  62. Moreno-Sastre M, Pastor M, Esquisabel A, Sans E, Viñas M, Fleischer A, et al. Pulmonary delivery of tobramycin-loaded nanostructured lipid carriers for Pseudomonas aeruginosa infections associated with cystic fibrosis. Int J Pharm. 2016;498(1):263–73.

    Article  PubMed  CAS  Google Scholar 

  63. Patil-Gadhe A, Pokharkar V. Pulmonary targeting potential of rosuvastatin loaded nanostructured lipid carrier: optimization by factorial design. Int J Pharm. 2016;501(1):199–210.

    Article  PubMed  CAS  Google Scholar 

  64. Brown A, Patel S, Ward C, Lorenz A, Ortiz M, DuRoss A, et al. PEG-lipid micelles enable cholesterol efflux in Niemann-Pick type C1 disease-based lysosomal storage disorder. Sci Rep. 2016;6:31750.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Yoon PO, Park JW, Lee CM, Kim SH, Kim HN, Ko Y, et al. Self-assembled micelle interfering RNA for effective and safe targeting of dysregulated genes in pulmonary fibrosis. J Biol Chem. 2016;291(12):6433–46.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Howell M, Mallela J, Wang C, Ravi S, Dixit S, Garapati U, et al. Manganese-loaded lipid-micellar theranostics for simultaneous drug and gene delivery to lungs. J Control Release. 2013;167(2):210–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Baginski L, Gobbo OL, Tewes F, Salomon JJ, Healy AM, Bakowsky U, et al. In vitro and in vivo characterisation of PEG-lipid-based micellar complexes of salmon calcitonin for pulmonary delivery. Pharm Res. 2012;29(6):1425–34.

    Article  PubMed  CAS  Google Scholar 

  68. Gaber NN, Darwis Y, Peh KK, Tan YTF. Characterization of polymeric micelles for pulmonary delivery of beclomethasone dipropionate. J Nanosci Nanotechnol. 2006;6(9–1):3095–101.

    Article  PubMed  CAS  Google Scholar 

  69. Sahib MN, Darwis Y, Peh KK, Abdulameer SA, Fung Tan YT. Incorporation of beclomethasone dipropionate into polyethylene glycol-diacyl lipid micelles as a pulmonary delivery system. Drug Dev Res. 2012;73(2):90–105.

    Article  CAS  Google Scholar 

  70. Jaiswal M, Dudhe R, Sharma PK. Nanoemulsion: an advanced mode of drug delivery system. 3 Biotech. 2015;5(2):123–7.

    Article  PubMed  Google Scholar 

  71. Mason T, et al. Extreme emulsification: formation and structure of nanoemulsions. Condens Matter Phys. 2006;9(1):193–9.

    Article  Google Scholar 

  72. Ngan CL, et al. Development of nano-colloidal system for fullerene by ultrasonic-assisted emulsification techniques based on artificial neural network. Arab J Chem. 2016;

  73. Mansour HM, Rhee Y-S, Wu X. Nanomedicine in pulmonary delivery. Int J Nanomedicine. 2009;4:299–319.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Kamali H, Abbasi S, Amini MA, Amani A. Investigation of factors affecting aerodynamic performance of nebulized nanoemulsion. Iran J Pharm Res. 2016;15(4):687–93.

    PubMed  PubMed Central  Google Scholar 

  75. Müllertz A, Ogbonna A, Ren S, Rades T. New perspectives on lipid and surfactant based drug delivery systems for oral delivery of poorly soluble drugs. J Pharm Pharmacol. 2010;62(11):1622–36.

    Article  PubMed  CAS  Google Scholar 

  76. Shafiq S, Shakeel F, Talegaonkar S, Ahmad FJ, Khar RK, Ali M. Design and development of oral oil in water ramipril nanoemulsion formulation: in vitro and in vivo assessment. J Biomed Nanotechnol. 2007;3(1):28–44.

    Article  CAS  Google Scholar 

  77. Butz N, Porté C, Courrier H, Krafft MP, Vandamme TF. Reverse water-in-fluorocarbon emulsions for use in pressurized metered-dose inhalers containing hydrofluoroalkane propellants. Int J Pharm. 2002;238(1):257–69.

    Article  PubMed  CAS  Google Scholar 

  78. Rudokas M, Najlah M, Alhnan MA, Elhissi A. Liposome delivery systems for inhalation: a critical review highlighting formulation issues and anticancer applications. Med Princ Pract. 2016;25(Suppl 2):60–72.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Unida S, Ito Y, Onodera R, Tahara K, Takeuchi H. Inhalation properties of water-soluble drug loaded liposomes atomized by nebulizer. Asian Journal of Pharmaceutical Sciences. 2016;11(1):205–6.

    Article  Google Scholar 

  80. Zhang L-J, Xing B, Wu J, Xu B, Fang XL. Biodistribution in mice and severity of damage in rat lungs following pulmonary delivery of 9-nitrocamptothecin liposomes. Pulm Pharmacol Ther. 2008;21(1):239–46.

    Article  PubMed  CAS  Google Scholar 

  81. Monforte V, et al. Nebulized liposomal amphotericin B prophylaxis for Aspergillus infection in lung transplantation: pharmacokinetics and safety. J Heart Lung Transplant. 2009;28(2):170–5.

    Article  PubMed  Google Scholar 

  82. Monforte V, López-Sánchez A, Zurbano F, Ussetti P, Solé A, Casals C, et al. Prophylaxis with nebulized liposomal amphotericin B for Aspergillus infection in lung transplant patients does not cause changes in the lipid content of pulmonary surfactant. J Heart Lung Transplant. 2013;32(3):313–9.

    Article  PubMed  Google Scholar 

  83. Zheng S, Chang S, Lu J, Chen Z, Xie L, Nie Y, et al. Characterization of 9-nitrocamptothecin liposomes: anticancer properties and mechanisms on hepatocellular carcinoma in vitro and in vivo. PLoS One. 2011;6(6):e21064.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Rose SJ, Neville ME, Gupta R, Bermudez LE. Delivery of aerosolized liposomal amikacin as a novel approach for the treatment of nontuberculous mycobacteria in an experimental model of pulmonary infection. PLoS One. 2014;9(9):e108703.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Clancy JP, Dupont L, Konstan MW, Billings J, Fustik S, Goss CH, et al. Phase II studies of nebulised Arikace in CF patients with Pseudomonas aeruginosa infection. Thorax. 2013;68(9):818–25.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Ehsan Z, Clancy JP. Management of Pseudomonas aeruginosa infection in cystic fibrosis patients using inhaled antibiotics with a focus on nebulized liposomal amikacin. Future Microbiol. 2015;10(12):1901–12.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Ehsan Z, Wetzel JD, Clancy JP. Nebulized liposomal amikacin for the treatment of Pseudomonas aeruginosa infection in cystic fibrosis patients. Expert Opin Investig Drugs. 2014;23(5):743–9.

    Article  PubMed  CAS  Google Scholar 

  88. Elhissi AMA, et al. Physical stability and aerosol properties of liposomes delivered using an air-jet nebulizer and a novel micropump device with large mesh apertures. Int J Pharm. 2007;334(1–2):62–70.

    Article  PubMed  CAS  Google Scholar 

  89. Ekambaram P, Sathali AAH, Priyanka K. Solid lipid nanoparticles: a review. Sci Rev Chem Commun. 2012;2(1):80–102.

    CAS  Google Scholar 

  90. Nassimi M, Schleh C, Lauenstein HD, Hussein R, Hoymann HG, Koch W, et al. A toxicological evaluation of inhaled solid lipid nanoparticles used as a potential drug delivery system for the lung. Eur J Pharm Biopharm. 2010;75(2):107–16.

    Article  PubMed  CAS  Google Scholar 

  91. Liu J, Gong T, Fu H, Wang C, Wang X, Chen Q, et al. Solid lipid nanoparticles for pulmonary delivery of insulin. Int J Pharm. 2008;356(1):333–44.

    Article  PubMed  CAS  Google Scholar 

  92. Varshosaz J, et al. Biodistribution of amikacin solid lipid nanoparticles after pulmonary delivery. Biomed Res Int. 2013;2013.

  93. Nassimi M, Schleh C, Lauenstein HD, Hussein R, Lübbers K, Pohlmann G, et al. Low cytotoxicity of solid lipid nanoparticles in in vitro and ex vivo lung models. Inhal Toxicol. 2009;21(sup1):104–9.

    Article  PubMed  CAS  Google Scholar 

  94. Weber S, Zimmer A, Pardeike J. Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) for pulmonary application: a review of the state of the art. Eur J Pharm Biopharm. 2014;86(1):7–22.

    Article  PubMed  CAS  Google Scholar 

  95. Mukherjee S, Ray S, Thakur R. Solid lipid nanoparticles: a modern formulation approach in drug delivery system. Indian J Pharm Sci. 2009;71(4):349–58.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Naseri N, Valizadeh H, Zakeri-Milani P. Solid lipid nanoparticles and nanostructured lipid carriers: structure, preparation and application. Advanced Pharmaceutical Bulletin. 2015;5(3):305–13.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Ashraf U, Chat OA, Maswal M, Jabeen S, Dar AA. An investigation of pluronic P123-sodium cholate mixed system: micellization, gelation and encapsulation behavior. RSC Adv. 2015;5(102):83608–18.

    Article  CAS  Google Scholar 

  98. Xu W, Ling P, Zhang T. Polymeric micelles, a promising drug delivery system to enhance bioavailability of poorly water-soluble drugs. J Drug Deliv. 2013;2013:340315.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Labiris NR, Dolovich MB. Pulmonary drug delivery. Part II: the role of inhalant delivery devices and drug formulations in therapeutic effectiveness of aerosolized medications. Br J Clin Pharmacol. 2003;56(6):600–12.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Fernández Tena A, Casan Clarà P. Deposition of inhaled particles in the lungs. Arch Bronconeumol. 2012;48(7):240–6.

    Article  PubMed  Google Scholar 

  101. Van Aalderen WM, et al. How to match the optimal currently available inhaler device to an individual child with asthma or recurrent wheeze. NPJ Prim Care Resp Med. 2015;25:14088.

    Article  Google Scholar 

  102. Lavorini F, Mannini C, Chellini E, Fontana GA. Optimising inhaled pharmacotherapy for elderly patients with chronic obstructive pulmonary disease: the importance of delivery devices. Drugs Aging. 2016;33(7):461–73.

    Article  PubMed  CAS  Google Scholar 

  103. Ionescu CM. The human respiratory system. In: The human respiratory system. Berlin: Springer; 2013. p. 13–22.

    Chapter  Google Scholar 

  104. Martin C, Frija J, Burgel P-R. Dysfunctional lung anatomy and small airways degeneration in COPD. Int J Chron Obstruct Pulmon Dis. 2013;8:7–13.

    PubMed  PubMed Central  Google Scholar 

  105. Hinds WC. Aerosol technology: properties, behavior, and measurement of airborne particles. Hoboken: John Wiley & Sons; 2012.

    Google Scholar 

  106. Glover W, Chan HK, Eberl S, Daviskas E, Verschuer J. Effect of particle size of dry powder mannitol on the lung deposition in healthy volunteers. Int J Pharm. 2008;349(1–2):314–22.

    Article  PubMed  CAS  Google Scholar 

  107. Ahmed K, Li Y, McClements DJ, Xiao H. Nanoemulsion- and emulsion-based delivery systems for curcumin: encapsulation and release properties. Food Chem. 2012;132(2):799–807.

    Article  CAS  Google Scholar 

  108. Rane SS, Anderson BD. What determines drug solubility in lipid vehicles: is it predictable? Adv Drug Deliv Rev. 2008;60(6):638–56.

    Article  PubMed  CAS  Google Scholar 

  109. Porter CJH, Pouton CW, Cuine JF, Charman WN. Enhancing intestinal drug solubilisation using lipid-based delivery systems. Adv Drug Deliv Rev. 2008;60(6):673–91.

    Article  PubMed  CAS  Google Scholar 

  110. Ngan CL, et al. Physicochemical characterization and thermodynamic studies of nanoemulsion-based transdermal delivery system for fullerene. Sci World J. 2014:2014.

  111. Magdassi S, Kamyshny A, Margulis-Goshen K. Applications of surfactants in pharmaceutical dosage forms. In: Handbook of detergents. Part E. Boca Raton: CRC Press; 2008. p. 455–68.

    Chapter  Google Scholar 

  112. Council, E. European Pharmacopeia 8.0. Strabourgs: Council of Europe: European Directorate for the Quality of Medicines and Healthcare; 2014. p. 363–5.

    Google Scholar 

  113. Chen Y, et al. High-speed laser image analysis of plume angles for pressurised metered dose inhalers: the effect of nozzle geometry. AAPS PharmSciTech. 2016:1–8.

  114. Feng ZQ, Sun CG, Zheng ZJ, Hu ZB, Mu DZ, Zhang WF. Optimization of spray-drying conditions and pharmacodynamics study of theophylline/chitosan/β-cyclodextrin microspheres. Dry Technol. 2015;33(1):55–65.

    Article  CAS  Google Scholar 

  115. Arora P, Kumar L, Vohra V, Sarin R, Jaiswal A, Puri MM, et al. Evaluating the technique of using inhalation device in COPD and bronchial asthma patients. Respir Med. 2014;108(7):992–8.

    Article  PubMed  Google Scholar 

  116. Ruge CA, Kirch J, Lehr C-M. Pulmonary drug delivery: from generating aerosols to overcoming biological barriers—therapeutic possibilities and technological challenges. Lancet Respir Med. 2013;1(5):402–13.

    Article  PubMed  CAS  Google Scholar 

  117. Gustafson HH, Holt-Casper D, Grainger DW, Ghandehari H. Nanoparticle uptake: the phagocyte problem. Nano Today. 2015;10(4):487–510.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  118. Oberdörster G. Safety assessment for nanotechnology and nanomedicine: concepts of nanotoxicology. J Intern Med. 2010;267(1):89–105.

    Article  PubMed  CAS  Google Scholar 

  119. Yang W, Peters JI, Williams Iii RO. Inhaled nanoparticles—a current review. Int J Pharm. 2008;356(1–2):239–47.

    Article  PubMed  CAS  Google Scholar 

  120. Ferreira AJ, Cemlyn-Jones J, Robalo Cordeiro C. Nanoparticles, nanotechnology and pulmonary nanotoxicology. Rev Port Pneumol. 2013;19(1):28–37.

    Article  PubMed  CAS  Google Scholar 

  121. Zhang WF, Zhou HY, Chen XG, Tang SH, Zhang JJ. Biocompatibility study of theophylline/chitosan/β-cyclodextrin microspheres as pulmonary delivery carriers. J Mater Sci Mater Med. 2009;20(6):1321–30.

    Article  PubMed  CAS  Google Scholar 

  122. Oh N, Park J-H. Endocytosis and exocytosis of nanoparticles in mammalian cells. Int J Nanomedicine. 2014;9(Suppl 1):51–63.

    PubMed  PubMed Central  Google Scholar 

  123. Herd H, Daum N, Jones AT, Huwer H, Ghandehari H, Lehr CM. Nanoparticle geometry and surface orientation influence mode of cellular uptake. ACS Nano. 2013;7(3):1961–73.

    Article  PubMed  CAS  Google Scholar 

  124. Olbrich C, Schöler N, Tabatt K, Kayser O, Müller RH. Cytotoxicity studies of dynasan 114 solid lipid nanoparticles (SLN) on RAW 264.7 macrophages—impact of phagocytosis on viability and cytokine production. J Pharm Pharmacol. 2004;56(7):883–91.

    Article  PubMed  CAS  Google Scholar 

  125. Olbrich C, Müller RH. Enzymatic degradation of SLN—effect of surfactant and surfactant mixtures. Int J Pharm. 1999;180(1):31–9.

    Article  PubMed  CAS  Google Scholar 

  126. Smyth HDC, Hickey AJ. Controlled pulmonary drug delivery. New York: Springer; 2011.

    Book  Google Scholar 

  127. Allon N, Saxena A, Chambers C, Doctor BP. A new liposome-based gene delivery system targeting lung epithelial cells using endothelin antagonist. J Control Release. 2012;160(2):217–24.

    Article  PubMed  CAS  Google Scholar 

Download references

Funding

The authors acknowledge the Universiti Putra Malaysia and Ministry of Higher Education, Malaysia under the NanoMITe for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheng Loong Ngan.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ngan, C.L., Asmawi, A.A. Lipid-based pulmonary delivery system: a review and future considerations of formulation strategies and limitations. Drug Deliv. and Transl. Res. 8, 1527–1544 (2018). https://doi.org/10.1007/s13346-018-0550-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13346-018-0550-4

Keywords

Navigation