Skip to main content

Advertisement

Log in

Rab23 activities and human cancer—emerging connections and mechanisms

  • Review
  • Published:
Tumor Biology

Abstract

Unlike founding members of the Ras superfamily of small GTPases that are prominently known for oncogenic signaling, members of the Rab subfamily are key regulators of cellular membrane traffic. However, a number of Rabs have in recent years also been strongly implicated as tumorigenic or metastatic biomarkers. Rab23 is an emerging example whose differential expression in tumor cells and functional association with proliferation and invasiveness is attracting attention as a useful cancer marker and a potential therapeutic target. Rab23 is ubiquitously expressed but appears to be particularly enriched in the adult brain. It has important developmental functions in vertebrates and has been shown to modulate Sonic hedgehog (Shh) and Nodal signaling. Although its exact cellular role in membrane traffic regulation remains elusive, its known role in Shh signaling, in conjunction with several recent findings, has clearly implicated a role for Rab23 in transport processes to the primary cilium. In this review, we summarize what is currently known about Rab23 as a cancer marker and discuss possible mechanism by which this Rab GTPase may act as an oncogenic or metastatic driver, while exhibiting tumor suppressive activity in some cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Stenmark H. Rab GTPases as coordinators of vesicle traffic. Nat Rev Mol Cell Biol. 2009;10:513–25.

    Article  CAS  PubMed  Google Scholar 

  2. Kelly EE, Horgan CP, Goud B, McCaffrey MW. The Rab family of proteins: 25 years on. Biochem Soc Trans. 2012;40:1337–47.

    Article  CAS  PubMed  Google Scholar 

  3. Rojas AM, Fuentes G, Rausell A, Valencia A. The Ras protein superfamily: evolutionary tree and role of conserved amino acids. J Cell Biol. 2012;196:189–201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hutagalung AH, Novick PJ. Role of Rab GTPases in membrane traffic and cell physiology. Physiol Rev. 2011;91:119–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Pfeffer SR, Dirac-Svejstrup AB, Soldati T. Rab GDP dissociation inhibitor: putting Rab GTPases in the right place. J Biol Chem. 1995;270:17057–9.

    Article  CAS  PubMed  Google Scholar 

  6. Pfeffer S, Aivazian D. Targeting Rab GTPases to distinct membrane compartments. Nat Rev Mol Cell Biol. 2004;5:886–96.

    Article  CAS  PubMed  Google Scholar 

  7. Seabra MC, Wasmeier C. Controlling the location and activation of Rab GTPases. Curr Opin Cell Biol. 2004;16:451–7.

    Article  CAS  PubMed  Google Scholar 

  8. Barr F, Lambright DG, Rab GEF, GAPs. Curr Opin Cell Biol. 2010;22:461–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Barrowman J, Bhandari D, Reinisch K, Ferro-Novick S. TRAPP complexes in membrane traffic: convergence through a common Rab. Nat Rev Mol Cell Biol. 2010;11:759–63.

    Article  CAS  PubMed  Google Scholar 

  10. Horgan CP, McCaffrey MW. Rab GTPases and microtubule motors. Biochem Soc Trans. 2011;39:1202–6.

    Article  CAS  PubMed  Google Scholar 

  11. Lim YS, Tang BL. A role for Rab23 in the trafficking of Kif17 to the primary cilium. J Cell Sci. 2015;128:2996–3008.

    Article  CAS  PubMed  Google Scholar 

  12. Novick P, Medkova M, Dong G, Hutagalung A, Reinisch K, Grosshans B. Interactions between Rabs, tethers, SNAREs and their regulators in exocytosis. Biochem Soc Trans. 2006;34:683–6.

    Article  CAS  PubMed  Google Scholar 

  13. Chua CEL, Tang BL. Engagement of the small GTPase Rab31 protein and its effector, early endosome antigen 1, is important for trafficking of the ligand-bound epidermal growth factor receptor from the early to the late endosome. J Biol Chem. 2014;289:12375–89.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Fukuda M. TBC proteins: GAPs for mammalian small GTPase Rab? Biosci Rep. 2011;31:159–68.

    Article  CAS  PubMed  Google Scholar 

  15. Bem D, Yoshimura SI, Nunes-Bastos R, Bond FC, Bond FF, Kurian MA, Rahman F, Handley MTW, Hadzhiev Y, Masood I, Straatman-Iwanowska AA, Cullinane AR, et al. Loss-of-function mutations in RAB18 cause Warburg micro syndrome. Am J Hum Genet. 2011;88:499–507.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Chia WJ, Tang BL. Emerging roles for Rab family GTPases in human cancer. Biochim Biophys Acta. 2009;1795:110–6.

    CAS  PubMed  Google Scholar 

  17. Recchi C, Seabra MC. Novel functions for Rab GTPases in multiple aspects of tumour progression. Biochem Soc Trans. 2012;40:1398–403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chua CEL, Tang BL. The role of the small GTPase Rab31 in cancer. J Cell Mol Med. 2015;19:1–0.

    Article  CAS  PubMed  Google Scholar 

  19. Wheeler DB, Zoncu R, Root DE, Sabatini DM, Sawyers CL. Identification of an oncogenic RAB protein. Science. 2015;

  20. Mellman I, Yarden Y. Endocytosis and cancer. Cold Spring Harb Perspect Biol. 2013;5:a016949.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Wang M, Dong Q, Wang Y. Rab23 is overexpressed in human astrocytoma and promotes cell migration and invasion through regulation of Rac1. Tumour Biol. 2016; in press.

  22. Westwick JK, Lambert QT, Clark GJ, Symons M, Van Aelst L, Pestell RG, Der CJ. Rac regulation of transformation, gene expression, and actin organization by multiple, PAK-independent pathways. Mol Cell Biol. 1997;17:1324–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Parri M, Chiarugi P. Rac and Rho GTPases in cancer cell motility control. Cell communication and signaling : CCS. 2010;8:23.

  24. Bravo-Cordero JJ, Marrero-Diaz R, Megías D, Genís L, García-Grande A, García MA, Arroyo AG, Montoya MC. MT1-MMP proinvasive activity is regulated by a novel Rab8-dependent exocytic pathway. EMBO J. 2007;26:1499–510.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Caswell PT, Spence HJ, Parsons M, White DP, Clark K, Cheng KW, Mills GB, Humphries MJ, Messent AJ, Anderson KI, McCaffrey MW, Ozanne BW, et al. Rab25 associates with alpha5beta1 integrin to promote invasive migration in 3D microenvironments. Dev Cell. 2007;13:496–510.

    Article  CAS  PubMed  Google Scholar 

  26. Caswell PT, Chan M, Lindsay AJ, McCaffrey MW, Boettiger D, Norman JC. Rab-coupling protein coordinates recycling of alpha5beta1 integrin and EGFR1 to promote cell migration in 3D microenvironments. J Cell Biol. 2008;183:143–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Dozynkiewicz MA, Jamieson NB, Macpherson I, Grindlay J, van den Berghe PVE, von Thun A, Morton JP, Gourley C, Timpson P, Nixon C, McKay CJ, Carter R, et al. . Rab25 and CLIC3 collaborate to promote integrin recycling from late endosomes/lysosomes and drive cancer progression. Dev Cell. 2012;22:131–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lütcke A, Parton RG, Murphy C, Olkkonen VM, Dupree P, Valencia A, Simons K, Zerial M. Cloning and subcellular localization of novel Rab proteins reveals polarized and cell type-specific expression. J Cell Sci. 1994;107(Pt 12):3437–48.

    PubMed  Google Scholar 

  29. Marcos I, Borrego S, Antiñolo G. Molecular cloning and characterization of human RAB23, a member of the group of Rab GTPases. Int J Mol Med. 2003;12:983–7.

    CAS  PubMed  Google Scholar 

  30. Günther T, Struwe M, Aguzzi A, Schughart K. Open brain, a new mouse mutant with severe neural tube defects, shows altered gene expression patterns in the developing spinal cord. Development. 1994;120:3119–30.

    PubMed  Google Scholar 

  31. Briscoe J, Thérond PP. The mechanisms of hedgehog signalling and its roles in development and disease. Nat Rev Mol Cell Biol. 2013;14:416–29.

    Article  PubMed  Google Scholar 

  32. Eggenschwiler JT, Espinoza E, Anderson KV. Rab23 is an essential negative regulator of the mouse sonic hedgehog signalling pathway. Nature. 2001;412:194–8.

    Article  CAS  PubMed  Google Scholar 

  33. Li N, Volff JN, Wizenmann A. Rab23 GTPase is expressed asymmetrically in Hensen's node and plays a role in the dorsoventral patterning of the chick neural tube. Dev Dyn. 2007;236:2993–3006.

    Article  CAS  PubMed  Google Scholar 

  34. Jenkins D, Seelow D, Jehee FS, Perlyn CA, Alonso LG, Bueno DF, Donnai D, Josifova D, Josifiova D, Mathijssen IMJ, Morton JEV, Orstavik KH, et al. . RAB23 mutations in carpenter syndrome imply an unexpected role for hedgehog signaling in cranial-suture development and obesity. Am J Hum Genet. 2007;80:1162–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Alessandri JL, Dagoneau N, Laville JM, Baruteau J, Hébert JC, Cormier-Daire V. RAB23 mutation in a large family from Comoros Islands with carpenter syndrome. Am J Med Genet A. 2010;152A:982–6.

    Article  PubMed  Google Scholar 

  36. Jenkins D, Baynam G, De Catte L, Elcioglu N, Gabbett MT, Hudgins L, Hurst JA, Jehee FS, Oley C, Wilkie AOM. Carpenter syndrome: extended RAB23 mutation spectrum and analysis of nonsense-mediated mRNA decay. Hum Mutat. 2011;32:E2069–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Eggenschwiler JT, Bulgakov OV, Qin J, Li T, Anderson KV. Mouse Rab23 regulates hedgehog signaling from smoothened to Gli proteins. Dev Biol. 2006;290:1–2.

    Article  CAS  PubMed  Google Scholar 

  38. Evans TM, Ferguson C, Wainwright BJ, Parton RG, Wicking C. Rab23, a negative regulator of hedgehog signaling, localizes to the plasma membrane and the endocytic pathway. Traffic. 2003;4:869–84.

    Article  CAS  PubMed  Google Scholar 

  39. Guo A, Wang T, Ng EL, Aulia S, Chong KH, Teng FYH, Wang Y, Tang BL. Open brain gene product Rab23: expression pattern in the adult mouse brain and functional characterization. J Neurosci Res. 2006;83:1118–27.

    Article  CAS  PubMed  Google Scholar 

  40. Huang S, Yang L, An Y, Ma X, Zhang C, Xie G, Chen ZY, Xie J, Zhang H. Expression of hedgehog signaling molecules in lung cancer. Acta Histochem. 2011;113:564–9.

    Article  CAS  PubMed  Google Scholar 

  41. Sun HJ, Liu YJ, Li N, Sun ZY, Zhao HW, Wang C, Li H, Ma FM, Shi SM, XQ X, Chen ZY, Huang SH, et al. Sublocalization of Rab23, a mediator of sonic hedgehog signaling pathway, in hepatocellular carcinoma cell lines. Mol Med Rep. 2012;6:1276–80.

    CAS  PubMed  Google Scholar 

  42. Wang Y, Ng EL, Tang BL. Rab23: what exactly does it traffic? Traffic. 2006;7:746–50.

    Article  CAS  PubMed  Google Scholar 

  43. Huangfu D, Liu A, Rakeman AS, Murcia NS, Niswander L, Anderson KV. Hedgehog signalling in the mouse requires intraflagellar transport proteins. Nature. 2003;426:83–7.

    Article  CAS  PubMed  Google Scholar 

  44. Huangfu D, Anderson KV. Cilia and Hedgehog responsiveness in the mouse. Proc Natl Acad Sci U S A. 2005;102:11325–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Nozawa YI, Lin C, Chuang PT. Hedgehog signaling from the primary cilium to the nucleus: an emerging picture of ciliary localization, trafficking and transduction. Curr Opin Genet Dev. 2013;23:429–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kuzhandaivel A, Schultz SW, Alkhori L, Alenius M. Cilia-mediated hedgehog signaling in Drosophila. Cell Rep. 2014;7:672–80.

    Article  CAS  PubMed  Google Scholar 

  47. Warner JF, McCarthy AM, Morris RL, McClay DR. Hedgehog signaling requires motile cilia in the sea urchin. Mol Biol Evol. 2014;31:18–22.

    Article  CAS  PubMed  Google Scholar 

  48. Kim J, Hsia EYC, Brigui A, Plessis A, Beachy PA, Zheng X. The role of ciliary trafficking in Hedgehog receptor signaling. Sci Signal. 2015;8:ra55.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Kamal R, Dahiya P, Kaur S, Bhardwaj R, Chaudhary K. Ellis-van Creveld syndrome: a rare clinical entity. Journal of oral and maxillofacial pathology : JOMFP. 2013;17:132–5.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Yang C, Chen W, Chen Y, Jiang J. Smoothened transduces Hedgehog signal by forming a complex with Evc/Evc2. Cell Res. 2012;22:1593–604.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Dorn KV, Hughes CE, Rohatgi R. A Smoothened-Evc2 complex transduces the Hedgehog signal at primary cilia. Dev Cell. 2012;23:823–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Barakat B, Yu L, Lo C, Vu D, De Luca E, Cain JE, Martelotto LG, Martellotto LG, Dedhar S, Sadler AJ, Wang D, Watkins DN, et al. Interaction of smoothened with integrin-linked kinase in primary cilia mediates Hedgehog signalling. EMBO Rep. 2013;14:837–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Kim J, Kato M, Beachy PA. Gli2 trafficking links Hedgehog-dependent activation of Smoothened in the primary cilium to transcriptional activation in the nucleus. Proc Natl Acad Sci U S A. 2009;106:21666–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Tukachinsky H, Lopez LV, Salic A. A mechanism for vertebrate Hedgehog signaling: recruitment to cilia and dissociation of SuFu-Gli protein complexes. J Cell Biol. 2010;191:415–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Cheng SY, Yue S. Role and regulation of human tumor suppressor SUFU in Hedgehog signaling. Adv Cancer Res. 2008;101:29–43.

    Article  CAS  PubMed  Google Scholar 

  56. Boehlke C, Bashkurov M, Buescher A, Krick T, John AK, Nitschke R, Walz G, Kuehn EW. Differential role of Rab proteins in ciliary trafficking: Rab23 regulates smoothened levels. J Cell Sci. 2010;123:1460–7.

    Article  CAS  PubMed  Google Scholar 

  57. Chi S, Xie G, Liu H, Chen K, Zhang X, Li C, Xie J. Rab23 negatively regulates Gli1 transcriptional factor in a Su(Fu)-dependent manner. Cell Signal. 2012;24:1222–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Yoshimura SI, Egerer J, Fuchs E, Haas AK, Barr FA. Functional dissection of Rab GTPases involved in primary cilium formation. J Cell Biol. 2007;178:363–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Leaf A, Von Zastrow M. Dopamine receptors reveal an essential role of IFT-B, KIF17, and Rab23 in delivering specific receptors to primary cilia. eLife. 2015;4:4:e06996.

  60. Pataki C, Matusek T, Kurucz E, Andó I, Jenny A, Mihály J. Drosophila Rab23 is involved in the regulation of the number and planar polarization of the adult cuticular hairs. Genetics. 2010;184:1051–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Fuller K, O'Connell JT, Gordon J, Mauti O, Eggenschwiler J. Rab23 regulates Nodal signaling in vertebrate left-right patterning independently of the Hedgehog pathway. Dev Biol. 2014;391:182–95.

    Article  CAS  PubMed  Google Scholar 

  62. Yang L, Clinton JM, Blackburn ML, Zhang Q, Zou J, Zielinska-Kwiatkowska A, Tang BL, Chansky HA. Rab23 regulates differentiation of ATDC5 chondroprogenitor cells. J Biol Chem. 2008;283:10649–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Huang TH, Shui HA, Ka SM, Tang BL, Chao TK, Chen JS, Lin YF, Chen A. Rab 23 is expressed in the glomerulus and plays a role in the development of focal segmental glomerulosclerosis. Nephrol Dial Transplant. 2009;24:743–54.

    Article  CAS  PubMed  Google Scholar 

  64. Huang TH, Ka SM, Hsu YJ, Shui HA, Tang BL, KY H, Chang JL, Chen A. Rab23 plays a role in the pathophysiology of mesangial cells--a proteomic analysis. Proteomics. 2011;11:380–94.

    Article  CAS  PubMed  Google Scholar 

  65. Smith AC, Heo WD, Braun V, Jiang X, Macrae C, Casanova JE, Scidmore MA, Grinstein S, Meyer T, JH Brumell. A network of Rab GTPases controls phagosome maturation and is modulated by Salmonella enterica serovar Typhimurium. J Cell Biol 2007;176:263–268.

  66. Liu YJ, Wang Q, Li W, Huang XH, Zhen MC, Huang SH, Chen LZ, Xue L, Zhang HW. Rab23 is a potential biological target for treating hepatocellular carcinoma. World J Gastroenterol. 2007;13:1010–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Hou Q, YH W, Grabsch H, Zhu Y, Leong SH, Ganesan K, Cross D, Tan LK, Tao J, Gopalakrishnan V, Tang BL, Kon OL, et al. Integrative genomics identifies RAB23 as an invasion mediator gene in diffuse-type gastric cancer. Cancer Res. 2008;68:4623–30.

    Article  CAS  PubMed  Google Scholar 

  68. Cai ZZ, LB X, Cai JL, Wang JS, Zhou B, Hu H. Inactivation of Rab23 inhibits the invasion and motility of pancreatic duct adenocarcinoma. Genet Mol Res. 2015;14:2707–15.

    Article  CAS  PubMed  Google Scholar 

  69. Bin Z, Dedong H, Xiangjie F, Hongwei X, Qinghui Y. The microRNA-367 inhibits the invasion and metastasis of gastric cancer by directly repressing Rab23. Genetic testing and molecular biomarkers. 2015;19:69–74.

    Article  CAS  PubMed  Google Scholar 

  70. Ye F, Tang H, Liu Q, Xie X, Wu M, Liu X, Chen B, Xie X. miR-200b as a prognostic factor in breast cancer targets multiple members of RAB family. J Transl Med. 2014;12:17.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Liu Q, Tang H, Liu X, Liao Y, Li H, Zhao Z, Yuan X, Jiang W. miR-200b as a prognostic factor targets multiple members of RAB family in glioma. Med Oncol. 2014;31:859.

    Article  PubMed  Google Scholar 

  72. Song X, Sun Y, Garen A. Roles of PSF protein and VL30 RNA in reversible gene regulation. Proc Natl Acad Sci U S A. 2005;102:12189–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Wang G, Cui Y, Zhang G, Garen A, Song X. Regulation of proto-oncogene transcription, cell proliferation, and tumorigenesis in mice by PSF protein and a VL30 noncoding RNA. Proc Natl Acad Sci U S A. 2009;106:16794–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. CF W, Tan GH, Ma CC, Li L. The non-coding RNA llme23 drives the malignant property of human melanoma cells. J Genet Genomics. 2013;40:179–88.

    Article  Google Scholar 

  75. Liu Y, Zeng C, Bao N, Zhao J, Hu Y, Li C, Chi S. Effect of Rab23 on the proliferation and apoptosis in breast cancer. Oncol Rep. 2015;34:1835–44.

    CAS  PubMed  Google Scholar 

  76. Kaid C, Silva PBG, Cortez BA, Rodini CO, Semedo-Kuriki P, Okamoto OK. miR-367 promotes proliferation and stem-like traits in medulloblastoma cells. Cancer Sci. 2015;106:1188–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Caswell P, Norman J. Endocytic transport of integrins during cell migration and invasion. Trends Cell Biol. 2008;18:257–63.

    Article  CAS  PubMed  Google Scholar 

  78. Ishikawa H, Marshall WF. Ciliogenesis: building the cell's antenna. Nat Rev Mol Cell Biol. 2011;12:222–34.

    Article  CAS  PubMed  Google Scholar 

  79. EC O, Katsanis N. Context-dependent regulation of Wnt signaling through the primary cilium. J Am Soc Nephrol. 2013;24:10–8.

    Article  Google Scholar 

  80. Ezratty EJ, Stokes N, Chai S, Shah AS, Williams SE, Fuchs E. A role for the primary cilium in Notch signaling and epidermal differentiation during skin development. Cell. 2011;145:1129–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Nachury MV. How do cilia organize signalling cascades? Philos Trans R Soc Lond Ser B Biol Sci. 2014;369.

  82. Min TH, Kriebel M, Hou S, Pera EM. The dual regulator Sufu integrates Hedgehog and Wnt signals in the early Xenopus embryo. Dev Biol. 2011;358:262–76.

    Article  CAS  PubMed  Google Scholar 

  83. Kong JH, Yang L, Dessaud E, Chuang K, Moore DM, Rohatgi R, Briscoe J, Novitch BG. Notch activity modulates the responsiveness of neural progenitors to sonic hedgehog signaling. Dev Cell. 2015;33:373–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Stasiulewicz M, Gray SD, Mastromina I, Silva JC, Björklund M, Seymour PA, Booth D, Thompson C, Green RJ, Hall EA, Serup P, Dale JK, et al. A conserved role for Notch signaling in priming the cellular response to Shh through ciliary localisation of the key Shh transducer Smo. Development. 2015;142:2291–303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Anastas JN, Moon RT. WNT signalling pathways as therapeutic targets in cancer. Nat Rev Cancer. 2013;13:11–26.

    Article  CAS  PubMed  Google Scholar 

  86. Gonnissen A, Isebaert S, Haustermans K. Targeting the Hedgehog signaling pathway in cancer: beyond Smoothened. Oncotarget. 2015;6:13899–913.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Alketbi A, Attoub S. Notch signaling in cancer: rationale and strategies for targeting. Curr Cancer Drug Targets. 2015;15:364–74.

    Article  CAS  PubMed  Google Scholar 

  88. Giakoustidis A, Giakoustidis D, Mudan S, Sklavos A, Williams R. Molecular signalling in hepatocellular carcinoma: role of and crosstalk among WNT/ß-catenin, Sonic Hedgehog, Notch and Dickkopf-1. Can J Gastroenterol Hepatol. 2015;29:209–17.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Christensen ST, Clement CA, Satir P, Pedersen LB. Primary cilia and coordination of receptor tyrosine kinase (RTK) signalling. J Pathol. 2012;226:172–84.

    Article  CAS  PubMed  Google Scholar 

  90. Farooqi AA, Waseem S, Riaz AM, Dilawar BA, Mukhtar S, Minhaj S, Waseem MS, Daniel S, Malik BA, Nawaz A, Bhatti SPDGF. The nuts and bolts of signalling toolbox. Tumour Biol. 2011;32:1057–70.

    Article  CAS  PubMed  Google Scholar 

  91. Farooqi AA, Siddik ZH. Platelet-derived growth factor (PDGF) signalling in cancer: rapidly emerging signalling landscape. Cell Biochem Funct. 2015;33:257–65.

    Article  CAS  PubMed  Google Scholar 

  92. Schneider L, Cammer M, Lehman J, Nielsen SK, Guerra CF, Veland IR, Stock C, Hoffmann EK, Yoder BK, Schwab A, Satir P, Christensen ST, et al. Directional cell migration and chemotaxis in wound healing response to PDGF-AA are coordinated by the primary cilium in fibroblasts. Cell Physiol Biochem. 2010;25:279–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Clement DL, Mally S, Stock C, Lethan M, Satir P, Schwab A, Pedersen SF, Christensen ST. PDGFRα signaling in the primary cilium regulates NHE1-dependent fibroblast migration via coordinated differential activity of MEK1/2-ERK1/2-p90RSK and AKT signaling pathways. J Cell Sci. 2013;126:953–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Umberger NL, Caspary T. Ciliary transport regulates PDGF-AA/αα signaling via elevated mammalian target of rapamycin signaling and diminished PP2A activity. Mol Biol Cell. 2015;26:350–8.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Bishop GA, Berbari NF, Lewis J, Mykytyn K. Type III adenylyl cyclase localizes to primary cilia throughout the adult mouse brain. J Comp Neurol. 2007;505:562–71.

    Article  PubMed  Google Scholar 

  96. Hong SH, Goh SH, Lee SJ, Hwang JA, Lee J, Choi IJ, Seo H, Park JH, Suzuki H, Yamamoto E, Kim IH, Jeong JS, et al. Upregulation of adenylate cyclase 3 (ADCY3) increases the tumorigenic potential of cells by activating the CREB pathway. Oncotarget. 2013;4:1791–803.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Gajjar AJ, Robinson GW. Medulloblastoma-translating discoveries from the bench to the bedside. Nat Rev Clin Oncol. 2014;11:714–22.

    Article  CAS  PubMed  Google Scholar 

  98. Cheng KW, Lahad JP, Kuo WL, Lapuk A, Yamada K, Auersperg N, Liu J, Smith-McCune K, KH L, Fishman D, Gray JW, Mills GB, et al. The RAB25 small GTPase determines aggressiveness of ovarian and breast cancers. Nat Med. 2004;10:1251–6.

    Article  CAS  PubMed  Google Scholar 

  99. Cheng JM, Volk L, Janaki DKM, Vyakaranam S, Ran S, Rao KA. Tumor suppressor function of Rab25 in triple-negative breast cancer. Int J Cancer. 2010;126:2799–812.

    CAS  PubMed  Google Scholar 

  100. Tang BL. Is Rab25 a tumor promoter or suppressor--context dependency on RCP status? Tumour Biol. 2010;31:359–61.

    Article  PubMed  Google Scholar 

  101. Nachury MV, Seeley ES, Jin H. Trafficking to the ciliary membrane: how to get across the periciliary diffusion barrier? Annu Rev Cell Dev Biol. 2010;26:59–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Lim YS, Tang BL. Getting into the cilia: nature of the barrier(s). Mol Membr Biol. 2013;30:350–4.

    Article  CAS  PubMed  Google Scholar 

  103. Denning KM, Smyth PC, Cahill SF, Finn SP, Conlon E, Li J, Flavin RJ, Aherne ST, Guenther SM, Ferlinz A, O'Leary JJ, Sheils OM, et al. A molecular expression signature distinguishing follicular lesions in thyroid carcinoma using preamplification RT-PCR in archival samples. Mod Pathol. 2007;20:1095–102.

    Article  CAS  PubMed  Google Scholar 

  104. Ho JR, Chapeaublanc E, Kirkwood L, Nicolle R, Benhamou S, Lebret T, Allory Y, Southgate J, Radvanyi F, Goud B. Deregulation of Rab and Rab effector genes in bladder cancer. PLoS One. 2012;7:e39469.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Davidson B, Abeler VM, Hellesylt E, Holth A, Shih IM, Skeie-Jensen T, Chen L, Yang Y, Wang TL. Gene expression signatures differentiate uterine endometrial stromal sarcoma from leiomyosarcoma. Gynecol Oncol. 2013;128:349–55.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

BLT is supported by NUS Graduate School for Integrative Sciences and Engineering. We are grateful to the reviewers for their insightful and constructive comments, which improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bor Luen Tang.

Ethics declarations

Conflicts of interest

None

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Ng, F. & Tang, B.L. Rab23 activities and human cancer—emerging connections and mechanisms. Tumor Biol. 37, 12959–12967 (2016). https://doi.org/10.1007/s13277-016-5207-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-016-5207-7

Keywords

Navigation