Skip to main content
Log in

Evaluation of genetic diversity in cultivated (O. europaea subsp. europaea L. ssp. europea var. europaea) and wild olives (Olea cuspidata Wall) using genome size and RAPD markers

  • Original Article
  • Published:
The Nucleus Aims and scope Submit manuscript

Abstract

Olive is one of the most important horticultural plants having wild and cultivated forms. Information on the genetic diversity attendant in cultivated and wild olives is quite important to augment breeding program on olive tree. The present study reports genome size (C-value) and RAPD analysis of four cultivated olive genotypes (O. europaea subsp. europaea var. europaea) and three wild olive (Olea cuspidate) populations from different regions of Iran. Determination of the relative C-value (RC) and 2C value of the wild and cultivated olives showed that the RC value varies from 1.89 pg in Dezful cultivar cultivated in Safiabad region to 2.28 pg in Olea cuspidate growing in Baghe-Mansouri locality. Similarly 2C DNA content varied from 5.36 pg in Dezful cultivar cultivated in Safiabad region to 6.2 pg in Olea cuspidate growing in Baghe-Mansouri locality. ANOVA followed by LSD test showed a significant difference in DNA content of the genotypes studied indicating quantitative differences in genetic material, although all of them are diploid with 2n = 2x = 46. RAPD analysis of the seven olive populations showed intra and inter genotype variations. The presence of polymorphic bands /loci observed in olive species studied indicates the presence of genetic polymorphism in these species, which may be used in olive breeding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Anderson A. Studien u¨ber die embryologie der familien Celastraceae, leaceae und Apocynaceae. Lunds Universitets A°rsskrift, N. F. Avd. 2, bd. 1931; 27 (no. 7).

  2. Angiolillo A, Mencuccini M, Baldoni L. Olive genetic diversity assessed using amplified fragment length polymorphisms. Theor Appl Genet. 1999;98:411–21.

    Article  CAS  Google Scholar 

  3. Arumuganathan K, Earle ED. Estimation of nuclear DNA content of plants by flow cytometry. Plant Mol Biol Report. 1991;9:229–33.

    Article  CAS  Google Scholar 

  4. Bandelj D, Jakše J, Javornik B. Assessment of genetic variability of olive varieties by microsatellite and AFLP markers. Euphytica. 2004;136:93–102.

    Article  CAS  Google Scholar 

  5. Baranyi M, Greilhuber J. Flow cytometric analysis of genome size variation in cultivated and wild Pisum sativum (Fabaceae). Plant Syst Evol. 1995;194:231–9.

    Article  Google Scholar 

  6. Baranyi M, Greilhuber J. Flow cytometric and Feulgen densitometric analysis of genome size variation in Pisum. Theor Appl Genet. 1996;92:297–307.

    Article  CAS  PubMed  Google Scholar 

  7. Belaj A, Satovic Z, Raloo L, Trujillo I. Genetic diversity and relationships in olive (Olea europaea L.) germplasm collections as determined by randomly amplified polymorphic DNA. Theor Appl Genet. 2002;105:638–44.

    Article  CAS  PubMed  Google Scholar 

  8. Bretagnolle F. Pollen production and spontaneous polyploidization in diploid populations of Anthoxanthum alpinum. Biol J Linn Soc. 2001;72:241–7.

    Article  Google Scholar 

  9. Besnard G, Baali-Cherif D. Coexistence of diploids and triploids in a Saharan relict olive: Evidence from nuclear microsatellite and flow cytometry analyses. C R Biol. 2009;332:1115–20.

    Article  CAS  PubMed  Google Scholar 

  10. Besnard G, Bervillé A. Multiple origins for Mediterranean olive (Olea europaea L. subsp. europaea) based upon mitochondrial DNA polymorphisms. CR Acad Sci Paris Sér III. 2000;323:178–81.

    Google Scholar 

  11. Besnard G, Baradat P, Chevalier D, Tagmount A, Bervill’e A. Genetic differentiation in the olive complex (Olea europaea) revealed by RAPDs and RFLPs in the rDNA genes. Genet Resour Crop Evol. 2001;48:165–82.

    Article  Google Scholar 

  12. Besnard G, Green PS, Bervillé A. The genus Olea: molecular approaches of its structure and relationships to other Oleaceae. Acta Bot Gall. 2002;149:49–66.

    Article  CAS  Google Scholar 

  13. Besnard G, Khadari B, Baradat P, Bervillé A. Olea europaea (Oleaceae) phylogeography based on chloroplast DNA polymorphism. Theor Appl Genet. 2002;104:1353–61.

    Article  CAS  PubMed  Google Scholar 

  14. Besnard G, Garcia-Verdugo C, Rubio De Casas R, Treier UA, Galland N, Vargas P. Polyploidy in the olive complex (Olea europaea): evidence from flow cytometry and nuclear microsatellite analyses. Ann Bot. 2008;101:25–30.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Breton C, Tersac M, Bervillé A. Genetic diversity and gene flow between the wild olive (oleaster, Olea europaea L.) and the olive: several Plio-Pleistocene refuge zones in the Mediterranean basin suggested by simple sequence repeats analysis. J Biogeogr. 2006;33:1916–28.

    Article  Google Scholar 

  16. Bures P, Wang YF, Horova L, Suda J. Genome size variation in central European species of Cirsium (Compositae) and their natural hybrids. Ann Bot. 2004;94:353–63.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Contento A, Ceccarelli M, Gelati MT, Maggini F, Baldoni L, Cionini PG. Diversity of Olea genotypes and the origin of cultivated olives. Theor Appl Genet. 2002;104:1229–38.

    Article  CAS  PubMed  Google Scholar 

  18. Costa C. Olive production in South Africa. A handbook for olive growers. Pretoria: Agricultural Research Council; 1998. 124 pp.

    Google Scholar 

  19. De la Rosa R, James C, Tobutt KR. Isolation and characterization of polymorphic microsatellite in olive (Olea europaea L.) and their transferability to other genera in the Oleaceae. Primer note. Mol Ecol Notes. 2002;2:265–7.

    Article  Google Scholar 

  20. Green PS. A revision of Olea L. (Oleaceae). Kew Bull. 2002;57:91–140.

    Article  Google Scholar 

  21. Green P, Wickens GE. The Olea europaea complex. In: Tan K, editor. The Davis & Hedge Festschrift. Edinburgh.: Edinburgh Univ. Press; 1989. p. 287–99.

    Google Scholar 

  22. Greilhuber J. Intraspecific variation in genome size in angiosperms: identifying its existence. Ann Bot. 2005;95:91–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Greilhuber J, Obermayer R. Genome size and maturity group in Glycine max (soybean). Heredity. 1997;78:547–51.

    Article  Google Scholar 

  24. Hess J, Kadereit JW, Vargas P. The colonization history of Olea europaea L. in Macaronesia based on internal transcribed spacer 1 (ITS-1) sequences, randomly amplified polymorphic DNAs (RAPD), and inter simple sequence repeats (ISSR). Mol Ecol. 2000;9:857–68.

    Article  CAS  PubMed  Google Scholar 

  25. Katsiotis A, Hagidimitriou M, Douka A, Hatzopoulos P. Genomic organization, sequence interrelationships, and physical localization using in situ hybridization of two tandemly repeated DNA sequences in the genus Olea. Genome. 1998;41:527–34.

    Article  CAS  PubMed  Google Scholar 

  26. Khadari B, Breton C, Moutier N, Roger JP, Besnard G, Bervillé A. The use of molecular markers for germplasm management in a French olive collection. Theor Appl Genet. 2003;106:521–9.

    CAS  PubMed  Google Scholar 

  27. Koce JD, Vilhar B, Bohanec B, Dermastia M. Genome size of Adriatic seagrasses. Aquat Bot. 2003;77:17–25.

    Article  CAS  Google Scholar 

  28. Leitch IJ, Bennett MD. Genome downsizing in polyploid plants. Biol J Linn Soc. 2004;82:651–63.

    Article  Google Scholar 

  29. Loureiro J, Rodriguez E, Costa A, Santos C. Nuclear DNA content estimations in wild olive (Olea europaea L. ssp. europaea var. sylvestris Brot.) and Portuguese cultivars of O. europaea using flow cytometry. Genet Resour Crop Evol. 2007;54:21–5.

    Article  CAS  Google Scholar 

  30. Lumaret R, Ouazzani N, Michaud H, Vivier G, Deguilloux MF, Di Giusto F. Allozyme variation of oleaster populations (wild olive tree) (Olea europaea L.) in the Mediterranean Basin. Heredity. 2004;92:343–51.

    Article  CAS  PubMed  Google Scholar 

  31. Minelli S, Maggini F, Gelati MT, Angiolillo A, Cionini PG. The chromosome complement of Olea europaea L.: characterization by differential staining of the chromatin and in-situ hybridization of highly repeated DNA sequences. Chromosom Res. 2000;8:615–9.

    Article  CAS  Google Scholar 

  32. Murray G, Thompson WF. Rapid isolation of high molecular weight plant DNA. Nucleic Acid Res. 1980;8:4321–5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Omrani-Sabbaghi A, Shahriari M, Falahati-Anbaran M, Nankali A, Gharehyazei B. Microsatellite markers based assessment of genetic diversity in Iranian olives (Olea europaea L.) collections. Sci Hortic. 2007;112:439–47.

    Article  CAS  Google Scholar 

  34. Podani J. Introduction to the exploration of multivariate data. English translation. Leiden: Backhuyes Publishers; 2000. p. 407.

    Google Scholar 

  35. Rallo P, Tenzer I, Gessler C, Baldoni L, Dorado G, Martín A. Transferability of olive microsatellite loci across the genus Olea. Theor Appl Genet. 2003;107:940–6.

    Article  CAS  PubMed  Google Scholar 

  36. Ramsey J. Unreduced gametes and neopolyploids in natural populations of Achillea borealis (Asteraceae). Heredity. 2007;98:143–50.

    Article  CAS  PubMed  Google Scholar 

  37. Rugini E, Pannelli G, Ceccarelli M, Muganu M. Isolation of triploid and tetraploid olive (Olea europaea L.) plants from mixoploid cv. ‘Frantoio’ and ‘Leccino’ mutants by in vivo and in vitro selection. Plant Breed. 1996;115:23–7.

    Article  Google Scholar 

  38. Sheidai M, Parsian HH, Vaezi-Joze S, Noormohammadi Z. Chromosome pairing and chiasma formation in some olive (Olea europaea L.) cultivars of Iran. Cytologia. 2008;73:269–74.

    Article  Google Scholar 

  39. Sheidai M, Noormohammadi Z, Hoshiar-Parsian H, Chegini F. Cyto-Morphology and molecular study of wild olive in Iran. Cytologia. 2009;64:369–77.

    Article  Google Scholar 

  40. Suda J, Krahulcová A, Trávníek P, Krahulec F. Ploidy level vs. DNA ploidy level: an appeal for consistent terminology. Taxon. 2006;55:447–50.

    Article  Google Scholar 

  41. Weising K, Nybom H, Wolf K, Kahl G. DNA finger printing in plants. 2nd ed. CRC Press, Taylor & Francis; 2005. p. 444.

  42. Zohary D. The wild genetic resources of the cultivated olive. Acta Horticult. 1994;356:62–5.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masoud Sheidai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sheidai, M., Yari, R., Farahani, F. et al. Evaluation of genetic diversity in cultivated (O. europaea subsp. europaea L. ssp. europea var. europaea) and wild olives (Olea cuspidata Wall) using genome size and RAPD markers. Nucleus 57, 215–222 (2014). https://doi.org/10.1007/s13237-014-0125-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13237-014-0125-9

Keywords

Navigation