Skip to main content
Log in

Entrapment characteristics of hydrosoluble vitamins loaded into chitosan and N,N,N-trimethyl chitosan nanoparticles

  • Articles
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

Nanoencapsulation is a process suitable for use in reducing degradation of instable components. In this study, chitosan and trimethyl chitosan with tripolyphosphate were used to nanoencapsulate vitamins C, B9, and B12. Analysis of the particle size showed that for a fix proportion of the polymer tripolyphosphate, the system showed a wide variation in size with the amount of added vitamins: e.g., for vitamin B9, the particle size varied from 150±5 nm to 809±150 nm. The zeta potential confirmed that trimethyl chitosan nanoparticles generally had a lower net positive charge (20 mV) than chitosan nanoparticles (40 mV). The encapsulation efficiency was found to be dependent on nanoparticle structure and vitamin solubility, with vitamin B9 the most efficiently encapsulated (approximately 40%). UV-Visible spectroscopy indicated different release profiles for vitamins C, B9, and B12 in a neutral PBS solution with release rates of 36%, 52%, and 16% after 2, 24, and 4 h, respectively. In conclusion the liberation was found to be slower in acidic media.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Herrmann and R. Obeid, Vitamin in the Prevention of Human Diseases, De Gruyter, Berlin, 2011.

    Google Scholar 

  2. Report of a Joint FAO/WHO Expert Consultation, Vitamin and Mineral Requirements in Human Nutrition, World Health Organization, Bangkok, 2004.

    Google Scholar 

  3. A. K. Soliman, K. Jauncey, and R. J. Roberts, Aquaculture, 60, 73 (1987).

    Article  CAS  Google Scholar 

  4. S. Abbas, C. Da Wei, K. Hayat, and X. M. Zhang, Food Rev. Int., 28, 343 (2012).

    Article  CAS  Google Scholar 

  5. K. Jang and H. G. Lee, J. Agric. Food Chem., 56, 1936 (2008).

    Article  CAS  Google Scholar 

  6. A. Alishahi, A. Mirvaghefi, M. R. Tehrani, H. Farahmand, S. A. Shojaosadati, F. A. Dorkoosh, and M. Z. Elsabee, Food Chem., 126, 935 (2011).

    Article  CAS  Google Scholar 

  7. H. Madziva, K. Kailasapathy, and M. Phillips, J. Microencapsul., 22, 343 (2005).

    Article  CAS  Google Scholar 

  8. A. Matsumoto, T. Kitazawa, J. Murata, Y. Horikiri, and H. Yamahara, J. Control. Release, 129, 223 (2008).

    Article  CAS  Google Scholar 

  9. L.-M. Zhao, L.-E Shi, Z.-L. Zhang, J.-M. Chen, D.-D. Shi, J. Yang, and Z.-X. Tang, Braz. J. Chem. Eng., 28, 353 (2011).

    CAS  Google Scholar 

  10. J. W. Bae, D. H. Go, K. D. Park, and S. J. Lee, Macromol. Res., 14, 461 (2006).

    Article  CAS  Google Scholar 

  11. M. Garcia-Fuentes and M. J. Alonso, J. Control. Release, 161, 496 (2012).

    Article  CAS  Google Scholar 

  12. K. Y. Lee, Macromol. Res., 15, 195 (2007).

    Article  CAS  Google Scholar 

  13. Y. Xu, Y. Du, R. Huang, and L. Gao, Biomaterials, 24, 5015 (2003).

    Article  CAS  Google Scholar 

  14. B. Slütter and W. Jiskoot, J. Control. Release, 148, 117 (2010).

    Article  Google Scholar 

  15. B. E. Benediktsdóttira, Ó. Baldurssonb, and M. Másson, J. Control. Release, 173, 18 (2014).

    Article  Google Scholar 

  16. D. de Britto, M. R. Moura, F. A. Aouada, L. H. C. Mattoso, and O. B. G. Assis, Food Hydrocol., 27, 487 (2012).

    Article  Google Scholar 

  17. D. de Britto, F. R. Frederico, and O. B. G. Assis, Polym. Int., 60, 910 (2011).

    Article  Google Scholar 

  18. Q. Gan, T. Wang, C. Cochrane, and P. McCarron, Colloids Surf. B, 44, 65 (2005).

    Article  CAS  Google Scholar 

  19. Y. Song, J. Zhou, Q. Li, Y. Guo, and L. Zhang, Macromol. Biosci., 9, 857 (2009).

    Article  CAS  Google Scholar 

  20. A. Geçer, N. Yildiz, A. Çalimli, and B. Turan, Macromol. Res., 18, 986 (2010).

    Article  Google Scholar 

  21. P. Gupta, K. Vermani, and S. Garg, Drug Discov. Today, 7, 569 (2002).

    Article  CAS  Google Scholar 

  22. N. S. Patil, J. S. Dordick, and D. G. Rethwisch, Biomaterials, 17, 2343 (1996).

    Article  CAS  Google Scholar 

  23. C. S. Brazel and N. A. Peppas, Polymer, 40, 3383 (1999).

    Article  CAS  Google Scholar 

  24. X. Huang and C. S. Brazel, J. Control. Release, 73, 121 (2001).

    Article  CAS  Google Scholar 

  25. Y. Cai and Y. Lapitsky, Colloids Surf. B, 115, 100 (2014).

    Article  CAS  Google Scholar 

  26. in Fundamentals and Applications of Controlled Release Drug Delivery, J. Siepmann, R. A. Siegel, and M. J. Rathbone, Eds., Springer, London, 2012, Chap. 2.

  27. C. Chen, J.-L. Zhou, X. Han, F. Song, X.-L. Wang, and Y.-Z. Wang, Nanotechnology, 25, 255101 (2014).

    Article  Google Scholar 

  28. J. Siepmann and N. A. Peppas, Adv. Drug Deliv. Rev., 48, 139 (2001).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Douglas de Britto.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Britto, D., de Moura, M.R., Aouada, F.A. et al. Entrapment characteristics of hydrosoluble vitamins loaded into chitosan and N,N,N-trimethyl chitosan nanoparticles. Macromol. Res. 22, 1261–1267 (2014). https://doi.org/10.1007/s13233-014-2176-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-014-2176-9

Keywords

Navigation