Skip to main content

Advertisement

Log in

Biocompatible polyhydroxybutyrate (PHB) production by marine Vibrio azureus BTKB33 under submerged fermentation

  • Original Article
  • Published:
Annals of Microbiology Aims and scope Submit manuscript

Abstract

Polyhydroxybutyrate (PHB) is known to have applications as medical implants and drug delivery carriers and is consequently in high demand. In the present study the possibilities of harnessing potential PHB-producing vibrios from marine sediments as a new source of PHB was investigated since marine environments are underexplored. Screening of polyhydroxyalkanoate (PHA)-producing vibrios from marine sediments was performed using a fluorescent plate assay followed by spectrophotometric analysis of liquid cultures. Out of 828 isolates, Vibrio sp. BTKB33 showed maximum PHA production of 0.21 g/L and PHA content of 193.33 mg/g of CDW. The strain was identified as Vibrio azureus based on phenotypic characterization and partial 16S rDNA sequence analysis. The strain also produced several industrial enzymes: amylase, caseinase, lipase, gelatinase, and DNase. The FTIR analysis of extracted PHA and its comparison with standard PHB indicated that the accumulated PHA is PHB. Bioprocess development studies for enhancing PHA production were carried out under submerged fermentation conditions. Optimal submerged fermentation conditions for enhanced intracellular accumulation of PHA production were found to be 35 °C, pH −7, 1.5 % NaCl concentration, agitation at 120 rpm, 12 h of inoculum age, 2.5 % initial inoculum concentration, and 36 h incubation along with supplementation of magnesium sulphate, glucose, and ammonium chloride. The PHA production after optimization was found to be increased to 0.48 g/L and PHA content to 426.88 mg/g of CDW, indicating a 2.28-fold increase in production. Results indicated that V. azureus BTKB33 has potential for industrial production of PHB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Anuradha P, Vijayalakshmi K, Prasanna ND, Sridevi K (2007) Production and properties of alkaline xylanases from Bacillus sp. isolated from sugarcane fields. Curr Sci 92:1283–1286

    CAS  Google Scholar 

  • Arun A, Arthi R, Shanmugabalaji V, Eyini M (2009) Microbial production of poly-beta-hydroxybutyrate by marine microbes isolated from various marine environments. Bioresour Technol 100:2320–2323

    Article  CAS  PubMed  Google Scholar 

  • Ayub ND, Pettinari MJ, Ruiz JA, Lopez NI (2004) A polyhydroxybutyrate-producing Pseudomonas sp. isolated from Antarctic environments with high stress resistance. Curr Microbiol 49:170–174

    Article  CAS  PubMed  Google Scholar 

  • Benoit TG, Wilson GR, Baygh CL (1990) Fermentation during growth and sporulation of Bacillus thuringiensis HD-1. Lett Appl Microbiol 10:15–18

    Article  CAS  Google Scholar 

  • Boyandin AN, Kalacheva GS, Medvedeva S, Rodicheva EK, Volova TG (2008) Luminous bacteria as producers of polyhydroxyalkanoates. Macromol Symp 269:17–22

    Article  CAS  Google Scholar 

  • Buchanan R, Gibbons N (1974) Bergey’s manual of determinative bacteriology. Baltimore, Maryland

    Google Scholar 

  • Castillo RF, Valera FR, Ramos JG, Berraquero FR (1986) Accumulation of poly (hydroxybutyrate) by halobacteria. Appl Environ Microbiol 51:214–216

    Google Scholar 

  • Chandrasekaran M, Lakshmanaperumalsamy P, Chandramohan D (1984) Occurrence of vibrios during fish spoilage. Curr Sci 53(1):31–32

    Google Scholar 

  • Chen GQ, Wu Q (2005) Microbial production and applications of chiral hydroxyalkanoates. Appl Microbiol Biotechnol 67:592–599

    Article  CAS  PubMed  Google Scholar 

  • Chen G, Wu Q, Zhao K, Yu P (2000) Functional polyhydroxyalkanoates synthesized by microorganisms. Chin J Polym Sci 18:389–396

    CAS  Google Scholar 

  • Chien CC, Chen CC, Choi MH, Kung SS, Wei YH (2007) Production of poly-betahydroxybutyrate (PHB) by Vibrio spp. isolated from marine environment. J Biotechnol 132:259–263

    Article  CAS  PubMed  Google Scholar 

  • DeSmet MJ, Eggin G, Witholt KB, Kingma J, Wynberg H (1983) Characterization of intracellular inclusions formed by Pseudomonas oleovorans during growth on octane. J Bacteriol 154:870–878

    CAS  Google Scholar 

  • Dobbelaere S, Croonenborghs A, Thys A, Ptacek D, Vanderleyden J, Dutto JP (2001) Responses of agronomically important crops to inoculation with Azospirillum. Aust J Plant Physiol 28:871–879

    Google Scholar 

  • Dong Z, Sun X (2000) A new method of recovering polyhydroxyalkanoate from Azotobacter chroococcum. Chin Sci Bull 45:252–255

    Article  CAS  Google Scholar 

  • Furniss AL, Lee JV, Donovan TJ (1978) The Vibrios, Public Health Laboratory Service Monograph Series no 11. London

  • Glazer AN, Nikaido H (1994) Microbial Biotechnology - Fundamentals of Applied Microbiology. Freeman WH, New York

    Google Scholar 

  • Hankin L, Zucker M, Sanda DC (1971) Improved solid medium for the detection and enumeration of pectolytic bacteria. Appl Microbiol 22:205–209

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hong K, Sun S, Tian W, Chen GQ, Huang W (1999) A rapid method for detecting bacterial polyhydroxyalkanoates in intact cells by fourier transform infrared spectroscopy. Appl Microbiol Biotechnol 51:523–526

    Article  CAS  Google Scholar 

  • Kansiz M, Billman JH, Mcnaughton D (2000) Quantitative determination of the biodegradable polymer poly (hydroxybutyrate) in a recombinant Escherichia coli strain by use of mid-infrared spectroscopy and multivariative statistics. Appl Environ Microbiol 31:3415–3420

    Article  Google Scholar 

  • Kasing A, Jong BC, Salleh MA (2000) Screening and isolation of a cellulolytic and amylolytic Bacillus from sago pith waste. J Gen Appl Microbiol 46:263–267

    Article  Google Scholar 

  • Kazanas N (1968) Proteolytic activity of microorganisms Isolated from freshwater fish. Appl Microbiol 16:128–132

    PubMed Central  CAS  PubMed  Google Scholar 

  • Keshavarz T, Roy I (2010) Polyhydroxyalkanoates: bioplastics with a green agenda. Curr Opin Microbiol 13:321–326

    Article  CAS  PubMed  Google Scholar 

  • Khanna S, Srivastava AK (2005) Recent advances in microbial polyhydroxyalkanoates. Proc Biochem 40:607–619

    Article  CAS  Google Scholar 

  • Koutinas AA, Xu Y, Wang R, Webb C (2007) Polyhydroxybutyrate production from a novel feedstock derived from a wheat-based biorefinery. Enzym Microb Technol 40:1035–1044

    Article  CAS  Google Scholar 

  • Law JH, Slepecky RA (1961) Assay of poly-β-hydroxybutyric acid. J Bacteriol 82:33–36

    Google Scholar 

  • Lee WH, Azizan MNM, Sudesh K (2007) Magnesium affects poly(3-hydroxybutyrate-co-4-hydroxybutyrate) content and composition by affecting glucose uptake in Delftia acidovorans. Malays J Microbiol 3:31–34

    Google Scholar 

  • Liangqi Z, Jingfan X, Tao F, Haibin W (2006) Synthesis of poly (3 hydroxybutyrate co-3- hydroxyoctanoate) by a Sinorhizobium fredii strain. Lett Appl Microbiol 4:344–349

    Article  Google Scholar 

  • Lillo JG, Valera FR (1990) Effects of culture conditions on poly(3-hydroxybutyric acid) production by Haloferax mediterranei. Appl Environ Microbiol 56:2517–2521

    PubMed Central  PubMed  Google Scholar 

  • López NI, Floccari ME, Steinbüchel A, García AF, Méndez BS (1995) Effect of poly(3-hydroxybutyrate) content on the starvation-survival of bacteria in natural waters. FEMS Microb Ecol 16:95–101

    Article  Google Scholar 

  • López-Cortés A, Lanz-Landázuri A, García-Maldonado JQ (2008) Screening and Isolation of PHB-Producing Bacteria in a Polluted Marine Microbial Mat. Microb Ecol 56:112–120

    Article  PubMed  Google Scholar 

  • Luengo JM, García B, Sandoval A, Naharro G, Olivera ER (2003) Bioplastics from microorganisms. Curr Opin Microbiol 6:251–260

    Article  CAS  PubMed  Google Scholar 

  • Madison LL, Huisman GW (1999) Metabolic engineering of poly(3- hydroxyalkanoates): from DNA to plastic. Microbiol Mol Biol Rev 63:21–53

    PubMed Central  CAS  PubMed  Google Scholar 

  • Nam DH, Ryu DDY (1985) Relationship between butirosin biosynthesis and sporulation in Bacillus circulans. Antimicrob Agents Chemother 27:789–801

    Article  Google Scholar 

  • Natarajan K, Kishore L, Babu CR (1995) Sodium chloride stress results in increased poly-beta-hydroxybutyrate production in Rhizobium DDSS-69. Microbios 82:95–107

    CAS  Google Scholar 

  • Nautiyal SC (1999) An efficient microbiological growth medium for screening phosphate solubilizing microorganisms. FEMS Microbiol Lett 170:265–270

    Article  CAS  PubMed  Google Scholar 

  • Obruca S, Marova I, Stankova M, Mravcova L, Svoboda Z (2010) Effect of ethanol and hydrogen peroxide on poly(3-hydroxybutyrate) biosynthetic pathway in Cupriavidus necator H16. World J Microbiol Biotechnol 26:1261–1267

    Article  CAS  PubMed  Google Scholar 

  • Palleroni NJ, Palleroni AV (1978) Alcaligenes latus, a new species of hydrogen-utilizing bacteria. Int J Syst Bacteriol 28:416–424

    Article  Google Scholar 

  • Ramachander M, Girisham S, Reddy SM (2010) Production of PHB by Rhodopseudomonas palustris KU003 under nitrogen limitation. Int J Appl Biol Pharm Technol 1:676–678

    Google Scholar 

  • Ramadas NV, Singh SK, Soccol CR, Pandey A (2009) Polyhydroxybutyrate production using agro-industrial residue as substrate by Bacillus sphaericus NCIM 5149. Braz Arch Biol Technol 52:17–23

    Article  CAS  Google Scholar 

  • Rawte T, Mavinkurve S (2004) Factors influencing polyhydroxyalkanoate accumulation in marine bacteria. Indian J Mar Sci 33:181–186

    CAS  Google Scholar 

  • Rawte T, Padte M, Mavinkurve S (2002) Incidence of marine and mangrove bacteria accumulating polyhydroxyalkanoates on the mid-west coast of India. World J Microbiol Biotechnol 18:655–659

    Article  CAS  Google Scholar 

  • Reddy GSN, Aggarwal RK, Matsumoto GI, Shivaji S (2000) Arthrobacter flavus sp. nov., a psychrophilic bacterium isolated from a pond in McMurdo Dry Valley, Antarctica. Int J Syst Evol Microbiol 50:1553–1561

    Article  CAS  PubMed  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (2000) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, NewYork

    Google Scholar 

  • Santhanam A, Sasidharan S (2010) Microbial production of polyhydroxyalkanotes from Alcaligens spp. and Pseudomonas oleovorans using different carbon sources. Afr J Biotechnol 9:3144–3150

    CAS  Google Scholar 

  • Saranya V, Shenbagarathai R (2010) Effect of Nitrogen and Calcium Sources on Growth and Production of PHA of Pseudomonas sp. LDC-5 and its Mutant. Curr Res J Biol Sci 2:164–167

    CAS  Google Scholar 

  • Simon F, Martin DP (2002) Applications of PHAs in medicine and pharmacy. In: Doi Y, Steinbuchel A (eds) Biopolymers, 4th edn. Wiley-VCH, Weinham, pp 91–103

    Google Scholar 

  • Spiekermann P, Rehm BHA, Kalscheuer R, Baumeister D, Steinbüchel A (1999) A sensitive, viable-colony staining method using nile red for direct screening of bacteria that accumulate polyhydroxyalkanoic acids and other lipid storage compounds. Arch Microbiol 171:73–80

    Article  CAS  PubMed  Google Scholar 

  • Steinbuchel A (2005) Non-biodegradable biopolymers from renewable resources: perspectives and impacts. Curr Opin Biotechnol 16:607–613

    Article  PubMed  Google Scholar 

  • Sun W, Cao JG, Teng K, Meighen EA (1994) Biosynthesis of poly-3-hydroxybutyrate in the luminescent bacterium, Vibrio harveyi and regulation by the lux autoinducer N-(3-hydroxybutanoyl) homoserine lactone. J Biol Chem 269:20785–20790

    CAS  PubMed  Google Scholar 

  • Valappil SP, Misra SK, Boccaccini AR, Keshavarz T, Bucke C, Roy I (2007) Large-scale production and efficient recovery of PHB with desirable material properties, from the newly characterised Bacillus cereus SPV. J Biotechnol 132:251–258

    Article  CAS  PubMed  Google Scholar 

  • Vijayendra SVN, Rastogi NK, Shamala TR, Anil Kumar PK, Kshama L, Joshi GJ (2007) Optimization of polyhydroxybutyrate production by Bacillus sp. CFR 256 with corn steep liquor as a nitrogen source. Indian J Microbiol 47:170–175

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wei YH, Chen WC, Wu HS, Janarthanan OM (2011) Biodegradable and biocompatible biomaterial, polyhydroxybutyrate, produced by an indigenous Vibrio sp. BM-1 isolated from marine environment. Mar Drugs 9:615–624

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Weiner RM (1997) Biopolymers from marine prokaryotes. Trends Biotechnol 15(10):390–394

    Article  CAS  PubMed  Google Scholar 

  • Yamane T, Chen XF, Ueda S (1996) Polyhydroxyalkanoate synthesis from alcohols during the growth of Paracoccus denitrificans. FEMS Microbiol Lett 135:207–211

    Article  CAS  Google Scholar 

  • Yoshizawa S, Wada M, Kita-Tsukamoto K, Ikemoto E, Yokota A, Kogure K (2009) Vibrio azureus sp. nov., a luminous marine bacterium isolated from seawater. Int J Syst Evol Microbiol 59:1645–1649

    Article  CAS  PubMed  Google Scholar 

  • Zierdt CH, Golde DW (1970) Deoxyribonuclease-Positive Staphylococcus epidermidis strains. Appl Microbiol 20:54–57

    PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

This study was supported by project grants from the Department of Ocean Development, Government of India (No. DOD/11 – MRDF/1/29/06) and the Centre for Marine Living Resources & Ecology, Ministry of Earth Sciences, Government of India (MOES/10-MLR/2/2007) given to Dr. Sarita G. Bhat, Dept. of Biotechnology, Cochin University of Science and Technology, Kochi, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarita Ganapathy Bhat.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sasidharan, R.S., Bhat, S.G. & Chandrasekaran, M. Biocompatible polyhydroxybutyrate (PHB) production by marine Vibrio azureus BTKB33 under submerged fermentation. Ann Microbiol 65, 455–465 (2015). https://doi.org/10.1007/s13213-014-0878-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13213-014-0878-z

Keywords

Navigation