Skip to main content

Advertisement

Log in

Next-generation sequencing and its potential impact on food microbial genomics

  • Review Article
  • Published:
Annals of Microbiology Aims and scope Submit manuscript

Abstract

Recent efforts of researchers to elucidate the molecular mechanisms of biological systems have been revolutionized greatly with the use of high throughput and cost-effective techniques such as next generation sequencing (NGS). Application of NGS to microbial genomics is not just limited to predict the prevalence of microorganisms in food samples but also to elucidate the molecular basis of how microorganisms respond to different food-associated conditions, which in turn offers tremendous opportunities to predict and control the growth and survival of desirable or undesirable microorganisms in food. Concurrently, NGS has facilitated the development of new genome-assisted approaches for correlating genotype and phenotype. The aim of this review is to provide a snapshot of the various possibilities that these new technologies are opening up in area of food microbiology, focusing the discussion mainly on lactic acid bacteria and yeasts associated with fermented food. The contribution of NGS to a system level understanding of food microorganisms is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ai L, Chen C, Zhou F, Wang L, Zhang H, Chen W, Guo B (2011) Complete genome sequence of the probiotic strain Lactobacillus casei BD-II. J Bacteriol 192:3160–3161

    Article  CAS  Google Scholar 

  • Amann RI, Ludwig W, Schleifer KH (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59:143–169

    CAS  PubMed  Google Scholar 

  • Andolfatto P, Davison D, Erezyilmaz D, Hu TT, Mast J, Sunayama-Morita T, Stern DL (2011) Multiplexed shotgun genotyping for rapid and efficient genetic mapping. Genome Res 21:610–617

    Article  CAS  PubMed  Google Scholar 

  • Andrews-Polymenis HL, Santiviago CL, McClelland M (2009) Novel genetic tools for studying food borne Salmonella. Curr Opin Biotechnol 20:149–157

    Article  CAS  PubMed  Google Scholar 

  • Angly FE, Felts B, Breitbarts M, Salamon P, Edwards RA, Carlson C, Chan AM, Haynes M, Kelley S, Liu H, Mahaffy JM, Mueller JE, Nulton J, Olson R, Parsons R, Rayhawk S, Suttle CA, Rohwer F (2006) The marine viromes of four oceanic regions. PLoS Biol 4:2121–2131

    Article  CAS  Google Scholar 

  • Ansorge WJ (2009) Next-generation DNA sequencing techniques. Nat Biotechnol 25:195–203

    CAS  Google Scholar 

  • Araya CL, Payen C, Dunham MJ, Fields S (2010) Whole-genome sequencing of a laboratory-evolved yeast strain. BMC Genomics 11:1–10

    Article  CAS  Google Scholar 

  • Belda-Ferre P, Alcaraz LD, Cabrera-Rubio R, Romero H, Simon-Soro A, Pignatelli M, Mira A (2011) The oral metagenome in health and disease. ISME J 6:46–56. doi:10.1038/ismej.2011.85

    Article  PubMed  CAS  Google Scholar 

  • Bentley DR (2006) Whole-genome re-sequencing. Curr Opin Genet Dev 16:545–552, Epub 2006 Oct 18

    Article  CAS  PubMed  Google Scholar 

  • Berretta J, Morillon A (2009) Pervasive transcription constitutes a new level of eukaryotic genome regulation. EMBO 10:973–982

    Article  CAS  Google Scholar 

  • Binladen J, Gilbert MT, Bollback JP, Panitz F, Bendixen C, Nielsen R, Willerslev E (2007) The use of coded PCR primers enables high-throughput sequencing of multiple homolog amplification products by 454 parallel sequencing. PLoS One 2:1–10

    Article  CAS  Google Scholar 

  • Birkeland R, Jin N, Ozdemir AC, Lyons RH Jr, Weisman LS, Wilson TE (2010) Discovery of mutations in Saccharomyces cerevisiae by pooled linkage analysis and whole-genome sequencing. Genetics 186:1127–1237

    Article  CAS  PubMed  Google Scholar 

  • Boguski MS, Arnaout R, Hill C (2009) Customized care 2020: how medical sequencing and network biology will enable personalized medicine. f-1000 Biol Rep 1: 73

  • Borneman AR, Chambers PJ, Pretorius IS (2007) Yeast system biology: modelling the winemaker’s art. Trends Biotechnol 25:349–355

    Article  CAS  PubMed  Google Scholar 

  • Borneman AR, Desany BA, Riches D, Affourtit JP, Forgan AH, Pretorius IS, Egholm M, Chambers PJ (2011) Whole-genome comparison reveals novel genetic elements that characterize the genome of industrial strains of Saccharomyces cerevisiae. PLoS Genet 7:1–10

    Article  CAS  Google Scholar 

  • Braslavsky I, Hebert B, Kartalov E, Quake SR (2003) Sequence information can be obtained from single DNA molecules. Proc Natl Acad Sci USA 100:3960–3964

    Article  CAS  PubMed  Google Scholar 

  • Brzuszkiewicz E, Bruggemann H, Liesegang H (2006) How to become a uropathogen: comparative genomic analysis of extraintestinal pathogenic Escherichia coli strains. Proc Natl Acad Sci USA 103:12879–12884

    Article  PubMed  CAS  Google Scholar 

  • Carter D (2009) Saccharomyces genome resequencing project, user manual. http://www.sanger.ac.uk/Teams/Team118//sgrp/. Accessed 4 September 2009 (Original publication: 2008)

  • Chen C, Ai L, Zhou F, Wang L, Zhang H, Chen W, Guo B (2011) Complete genome sequence of the probiotic bacterium Lactobacillus casei LC2W. J Bacteriol 193:3419–3420

    Article  CAS  PubMed  Google Scholar 

  • Chung CAB, Boyd VL, McKernan KJ, Fu Y, Monighetti C, Peckham HE, Barker M (2010) Whole methylome analysis by ultradeep sequencing using two-base encoding. PLoS One 5:1–8

    Google Scholar 

  • Coenye T, Gevers D, Van de Peer Y, Vandamme P, Swings J (2005) Towards a prokaryotic genomic taxonomy. FEMS Microbiol Rev 29:147–167

    CAS  PubMed  Google Scholar 

  • Croucher NJ, Thomson NR (2010) Studying bacterial transcriptomes using RNA-seq. Curr Opin Microbiol 13:619–624

    Article  CAS  PubMed  Google Scholar 

  • Degnan PH, Ochman H (2011) Illumina-based analysis of microbial community diversity. ISME J. doi:10.1038/ismej.2011.74

  • Diguistini S, Liao N, Platt D, Robertson G, Seidel M, Chan SK, Docking TR, Birol I, Holt RA, Hirst M, Mardis E, Marra MA, Hamelin RC, Bohlmann J, Breuil C, Jones SJM (2009) De novo genome sequence assembly of a filamentous fungus using Sanger, 454 and Illumina sequence data. Genome Biol 10:R94.1–R94.12

    Article  CAS  Google Scholar 

  • Dobson A, O’Sullivan O, Cotter PD, Ross P, Hill C (2011) High-throughput sequence-based analysis of the bacterial composition of kefir and an associated kefir grain. FEMS Microbiol Lett 320:56–62

    Article  CAS  PubMed  Google Scholar 

  • Edwards RA, Rodrizues-Brito B, Wegley L, Haynes M, Breitbart M, Peterson DM, Saar MO, Alexanser S, Alexander EC Jr, Rohwer F (2006) Using pyrosequencing to shed light on deep mine microbial ecology. BMC Genomics 7:1–13

    Article  CAS  Google Scholar 

  • Entcheva P, Liebl W, Johann A, Hartsch T, Streit WR (2001) Direct cloning from enrichment cultures, a reliable strategy for isolation of complete operons and genes from microbial consortia. Appl Environ Microbiol 67:89–99

    Article  CAS  PubMed  Google Scholar 

  • Ercolini D, Ferrocino I, Nasi A, Ndagijimana M, Verrocchi P, La Storia A, Laghi L, Mauriello G, Villiani F (2011) Microbial metabolites and bacterial diversity in beef stored in different packaging conditions monitored by pyrosequencing, PCR-DGGE, SPME-GC/MS and HNMR. Appl Environ Microbiol 77:7372–7381. doi:10.1128/AEM.05521-11

    Article  CAS  PubMed  Google Scholar 

  • Eschenfeldt WH, Stols L, Rosenbaum H, Khambatta ZS, Quaite-Randall E, Wu S, Kilgore DC, Trent JD, Donnelly MI (2001) DNA from uncultured organisms as a source of 2,5-diketo-d-gluconic acid reductases. Appl Environ Microbiol 67:4206–4214

    Article  CAS  PubMed  Google Scholar 

  • Farrer RA, Kemen E, Jones JDG, Studholme DJ (2009) De novo assembly of the Pseudomonas syringae pv. Syringae B728a genome using Illumina/Solexa short sequence reads. FEMS Microbiol Lett 291:103–111

    Article  CAS  PubMed  Google Scholar 

  • Farris MH, Olson JB (2007) Detection of Actinobacteria cultivated from environmental samples reveals bias in universal primers. Lett Appl Microbiol 45:376–381

    Article  CAS  PubMed  Google Scholar 

  • Fierer N, Breitbart M, Nultons J (2007) Metagenomic and small-subunit rRNA analyses of the genetic diversity of bacteria, archaea, fungi, and viruses in soil. Appl Environ Microbiol 73:7059–7066

    Article  CAS  PubMed  Google Scholar 

  • Fleischmann RD, Adams MD, White O, Clayton RA, Kirkness EF, Kerlavage AR, Bult CJ, Tomb JF, Dougherty BA, Merrick JM (1995) Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science 269:496–512

    Article  CAS  PubMed  Google Scholar 

  • Forde BM, Neville BA, O’Donnell MM, Riboulet-Bisson E, Claesson MJ, Coghlan A, Ross RP, O’Tolle PW (2011) Genome sequences and comparative genomics of two Lactobacillus ruminis strains from the bovine and human intestinal tracts. Microb Cell Factories 10:1–15

    Article  Google Scholar 

  • Fous SD, Nagarajan RP, Costello JF (2010) Genome-scale DNA methylation analysis. Epigenetics 2:105–117

    Google Scholar 

  • Ghosh TS, Mohammed MH, Rajasingh H, Chadaram S, Mande SS (2011) HabiSign: a novel approach for comparison of metagenomes and rapid identification of habitat-specific sequences. BMC Bioinforma 12(Suppl 13):S9

    Article  Google Scholar 

  • Gilbert W (1981) DNA sequencing and gene structure Nobel lecture, 8 December 1980. Biosci Rep 1:353–375

    Article  CAS  PubMed  Google Scholar 

  • Gilmour MW, Graham M, Van Domselaar G, Tyler S, Kent H, Trout-Yakel KM, Larios O, Allen V, Lee B, Nadon C (2010) High-throughput genome sequencing of two Listeria monocytogenes clinical isolates during a large foodborne outbreak. BMC Genomics 11:1–15

    Article  CAS  Google Scholar 

  • Giraffa G, Neviani E (2001) DNA-based, culture independent strategies for evaluating microbial communities in food-associated ecosystems. Int J Food Microbiol 67:19–34

    Article  CAS  PubMed  Google Scholar 

  • Glenn TC (2011) Field guide to next-generation DNA sequencers. Mol Ecol Resour 11:759–769

    Article  CAS  PubMed  Google Scholar 

  • Hamady M, Walker JJ, Harris JK, Gold NJ, Knight R (2008) Error-correcting barcoded primers for pyrosequencing hundreds of samples in multiplex. Nat Methods 5:235–237

    Article  CAS  PubMed  Google Scholar 

  • Handelsman J, Rondon MR, Brady SF, Clardy J, Goodman RM (1998) Molecular biological access to the chemistry of unknown soil microbes: a new frontier for natural products. Chem Biol 5:R245–R249

    Article  CAS  PubMed  Google Scholar 

  • Harris SR, Feil EJ, Holden MT, Quail MA, Nickerson EK, Chantratita N, Gardete S, Tavares A, Day N, Lindsay JA, Edgeworth JD, De Lencastre H, Parkhill J, Peacock SJ, Bentley SD (2010) Evolution of MRSA during hospital transmission and intercontinental spread. Science 327:469–474

    Article  CAS  PubMed  Google Scholar 

  • He H, Sebaihia M, Lawley TD et al (2010) Evolutionary dynamics of Clostridium difficile over short and long time scales. Proc Natl Acad Sci USA 107:7527–7532

    Article  CAS  PubMed  Google Scholar 

  • Henne A, Schmitz A, Bömeke M, Gottschalk G, Daniel R (2000) Screening of environmental DNA libraries for the presence of genes conferring lipolytic activity on Escherichia coli. Appl Environ Microbiol 66:3113–3116

    Article  CAS  PubMed  Google Scholar 

  • Herrgård MJ, Swainston N, Dobson P et al (2010) A consensus yeast metabolic network reconstruction obtained from a community approach to systems biology. Nat Biotechnol 26:1155–1160

    Article  CAS  Google Scholar 

  • Hert DG, Fredlake CP, Barron AE (2008) Advantages and limitations of next generation sequencing technologies: a comparison of electrophoresis and non-electrophoresis methods. Electrophoresis 29:4618–4626

    Article  CAS  PubMed  Google Scholar 

  • Holt KE, Parkhill J, Mazzoni CJ, Roumagnac P, Weill FX, Goodhead I, Rance R, Baker S, Maskell DJ, Wain J, Dolecek C, Achtman M, Dougan G (2008) High-throughput sequencing provides insights into genome variation and evolution in Salmonella Typhi. Nat Genet 40:987–993

    Article  CAS  PubMed  Google Scholar 

  • Huang S, Li R, Zhang Z et al (2009) The genome of the cucumber, Cucumis sativus. Nat Genet 41:1275–1281

    Article  CAS  PubMed  Google Scholar 

  • Huber JA, Welch DBM, Morrison HG, Huse SM, Neal PR, Buutterfield DA, Sogin ML (2007) Microbial population structures in the deep marine biosphere. Science 318:97–100

    Article  CAS  PubMed  Google Scholar 

  • Hugenholtz P, Goebel BM, Pace NR (1998) Impact of culture-independent studies on the emerging phylogenetic view of bacterial diversity. J Bacteriol 180:4765–4774

    CAS  PubMed  Google Scholar 

  • Humblot C, Guyot JP (2009) Pyrosequencing of tagged 16S rRNA gene amplicons for rapid deciphering of the microbiomes of fermented foods such as pearl millet slurries. Appl Environ Microbiol 75:4354–4361

    Article  CAS  PubMed  Google Scholar 

  • Ilie M, Fazayeli F, Ilie S (2011) HiTEC: accurate error correction high-throughput sequencing data. Bioinformatics 27:295–302

    Article  CAS  PubMed  Google Scholar 

  • Imelfort M, Edwards D (2009) De novo sequencing of plant genomes using second-generation technologies. Brief Bioinform 10:609–618

    Article  CAS  PubMed  Google Scholar 

  • Jany JL, Barbier G (2008) Culture-independent methods for identifying microbial communities in cheese. Food Microbiol 25:839–848

    Article  CAS  PubMed  Google Scholar 

  • Jung JY, Lee SH, Kim JM, Park MS, Bae JW, Hahn Y, Madsen EL, Jeon CO (2011) Metagenomic analysis of kimchi, a traditional Korean fermented food. Appl Environ Microbiol 77:2264–2274

    Article  CAS  PubMed  Google Scholar 

  • Juste A, Thomma BPHJ, Lievens B (2008) Recent advances in molecular techniques to study microbial communities in food-associated matrices and processes. Food Microbiol 25:745–761

    Article  CAS  PubMed  Google Scholar 

  • Kim YS, Kim MC, Kwon SW, Kim SJ, Park IC, Ka JO, Weon HY (2011) Analysis of bacterial communities in Meju, a Korean traditional fermented soybean bricks, by cultivation-based and pyrosequencing methods. J Microbiol 49:340–348

    Article  PubMed  Google Scholar 

  • Klenk HP, Göker M (2010) En route to a genome-based classification of Archaea and Bacteria? Syst Appl Microbiol 33:175–182

    Article  CAS  PubMed  Google Scholar 

  • Korbel JO, Urban AE, Affourtit JP, Godwin B, Grubert F, Simons JF, Kim PM, Palejev D, Carriero NJ, Du L, Taillon BE, Chen Z, Tanzer A, Saunders AC, Chi J, Yang F, Carter NP, Hurles ME, Weissman SM, Harkins TT, Gerstein MB, Egholm M, Snyder M (2007) Paired-end mapping reveals extensive structural variation in the human genome. Science 318:420–426

    Article  CAS  PubMed  Google Scholar 

  • Lee SH, Jung JY, Lee SH, Jeon CO (2011) Complete genome sequence of Weissella koreensis KACC 15510, isolated from Kimchi. J Bacteriol 193:5534

    Article  CAS  PubMed  Google Scholar 

  • Leininger S, Urich T, Schloter M, Schwark L, Qi J, Nicol GW, Prosser JI, Schuster SC, Schleper C (2006) Archaea predominate among ammoniaoxidizing prokaryotes in soils. Nature 442:806–809

    Article  CAS  PubMed  Google Scholar 

  • Li R, Fan W, Tian G et al (2010) The sequence and de novo assembly of the giant panda genome. Nature 463:311–317

    Article  CAS  PubMed  Google Scholar 

  • Li XR, Ma EB, Yan LZ, Meng H, Du XW, Zhang SW, Quan ZX (2011) Bacterial and fungal diversity in the traditional Chinese liquor fermentation process. Int J Food Microbiol 146:31–37

    Article  CAS  PubMed  Google Scholar 

  • Liti G, Louis EJ (2005) Yeast evolution and comparative genomics. Annu Rev Microbiol 59:135–153

    Article  CAS  PubMed  Google Scholar 

  • Liti G, Carter DM, Mosses AM et al (2009) Population genomics of domestic and wild yeasts. Nature 458:337–341

    Article  CAS  PubMed  Google Scholar 

  • Liu GE (2009) Applications and case studies of the next-generation sequencing technologies in food, nutrition and agriculture. Recent Patents Food Nutr Agric 1:75–79

    Article  CAS  Google Scholar 

  • Lui S, Leathers TD, Copeland A (2011) Complete genome sequence of Lactobacillus buchneri NRRL B-30929, a novel strain from a commercial ethanol plant. J Bacteriol 193:4019–4020

    Article  CAS  Google Scholar 

  • Lynch M, Sung W, Morris K, Coffey N, Landry CR, Dopman EB, Dickinson WJ, Okamoto K, Kulkarni S, Hartl DL, Thomas WK (2008) A genome-wide view of the spectrum of spontaneous mutations in yeast. Proc Natl Acad Sci USA 105:9272–9277

    Article  CAS  PubMed  Google Scholar 

  • Machielsen R, van Alen-Boerrigter IJ, Koole LA, Bongers RS, Kleerebezem M, Van Hylckama Vlieg JET (2010) Indigenous and environmental modulation of frequencies of mutation in Lactobacillus plantarum. Appl Environ Microbiol 76:1587–1595

    Article  CAS  PubMed  Google Scholar 

  • Makarova K, Slesarev A, Wolf W et al (2006) Comparative genomics of lactic acid bacteria. Proc Natl Acad Sci USA 103:15611–15616

    Article  PubMed  Google Scholar 

  • Mardis ER (2008a) The impact of next-generation sequencing technology on genetics. Trends Genet 24:133–141

    Article  CAS  PubMed  Google Scholar 

  • Mardis ER (2008b) Next-generation DNA sequencing methods. Annu Rev Genomics Hum Genet 9:387–402

    Article  CAS  PubMed  Google Scholar 

  • Mardis ER (2009) New strategies and emerging technologies for massively parallel sequencing: applications in medical research. Genome Med 1:40.1–40.4

    Article  CAS  Google Scholar 

  • Mardis ER (2010) The $1,000 genome, the $100,000 analysis? Genome Med 2:84.1–84.3

    Article  Google Scholar 

  • Margulies M, Egholm M, Altman WE et al (2005) Genome sequencing in microfabricated high-density picolitre reactors. Nature 437:376–380

    CAS  PubMed  Google Scholar 

  • Masoud W, Takamiya M, Vogensen FK (2011) Characterization of bacterial populations in Danish raw milk cheeses made with different starter cultures by denaturating gradient gel electrophoresis and pyrosequencing. Int Dairy J 21:142–148

    Article  CAS  Google Scholar 

  • Metzker ML (2010) Sequencing technologies-the next generation. Nat Rev Genet 11:31–46

    Article  CAS  PubMed  Google Scholar 

  • Mitra RD, Church GM (1999) In situ localized amplification and contact replication of many individual DNA molecules. Nucleic Acids Res 27:1–6

    Article  Google Scholar 

  • Mitra RD, Shendure J, Olejnik J, Krzymanska OE, Church GM (2003) Fluorescent in situ sequencing on polymerase colonies. Anal Biochem 320:55–65

    Article  CAS  PubMed  Google Scholar 

  • Mitra S, Stärk M, Huson DH (2011) Analysis of 16S rRNA environmental sequences using MEGAN. BMC Genomics 12(Suppl 3):S17

    Article  CAS  PubMed  Google Scholar 

  • Morales SE, Holben WE (2011) Linking bacterial identities and ecosystem processes: can ‘omic’ analyses be more than the sum of their parts? FEMS Microbiol Ecol 75:2–16

    Article  CAS  PubMed  Google Scholar 

  • Morozova O, Marra MA (2008) Applications of next-generation sequencing technologies in functional genomics. Genetics 92:255–264

    CAS  Google Scholar 

  • Nagalakshmi U, Wang Z, Waern K, Shou C, Raha D, Gerstein M, Synder M (2008) The transcriptional landscape of the yeast genome defined by RNA sequencing. Science 320:1344–1349

    Article  CAS  PubMed  Google Scholar 

  • Nam SH, Choi SH, Kang A, Kim DW, Kim RN, Kim A, Kim DS, Park HS (2011a) Genome sequence of Lactobacillus farciminis KCTC 3681. J Bacteriol 193:1790–1791

    Article  CAS  PubMed  Google Scholar 

  • Nam SH, Choi SH, Kang A, Kim DW, Kim RN, Kim A, Kim DS, Park HS (2011b) Genome sequence of Lactobacillus coryniformis subsp. coryniformis KCTC 3167. J Bacteriol 193:1014–1015

    Article  CAS  PubMed  Google Scholar 

  • Neil H, Malabat C, d’Aubenton-Carafa Y, Xu Z, Steinmetz LM, Jacquier A (2009) Widespread bidirectional promoters are the major source of cryptic transcripts in yeast. Nature 457:1038–1042

    Article  CAS  PubMed  Google Scholar 

  • Nowrousian M, Stajich JE, Chu M, Engh I, Espagne E, Halliday K, Kamerewerd J, Kempken F, Knab B, Kuo HC, Osiewacz HD, Poggeler S, Read ND, Seiler S, Smith KM, Zickler D, Kuck U, Freitag M (2010) De novo assembly of a 40 Mb eukaryotic genome from short sequence reads: Sordaria macrospora, a model organism for fungal morphogenesis. PLoS Genet 6:1–22

    Article  CAS  Google Scholar 

  • O’Flaherty S, Klaenhammer TR (2011) The impact of omic technologies on the study of food microbes. Annu Rev Food Sci Biotechnol 2:353–371

    Article  Google Scholar 

  • Oguntoyinbo FA, Tourlomousis P, Gasson MJ, Narbad A (2011) Analysis of bacterial communities of traditional fermented West African cereal foods using culture independent methods. Int J Food Microbiol 145:205–210

    Article  PubMed  Google Scholar 

  • Otero JM, Vongsangnak W, Asadollahi MA, Olivares-Hernandes R, Maury J, Farinelli L, Barlocher L, Osteras M, Schalk M, Clark A, Neilsen J (2010) Whole genome sequencing of Saccharomyces cerevisiae: from genotype to phenotype for improved metabolic engineering applications. BMC Genet 11:1–17

    Google Scholar 

  • Pachter L (2011) Models for transcript quantification from RNA-Seq. arXiv:1104.3889v2

  • Parameswaran P, Jalili R, Tao L, Shokralla S, Gharizadeh B, Ronaghi M, Fire AZ (2007) A pyrosequencing-tailored nucleotide barcode design unveils opportunities for large-scale sample multiplexing. Nucleic Acids Res 35:1–9

    Article  CAS  Google Scholar 

  • Pareek CS, Smoczynski R, Tretyn A (2011) Sequencing technologies and genome sequencing. J Appl Genet 52:413–435

    Article  CAS  PubMed  Google Scholar 

  • Park EJ, Kim KH, Abell GCJ, Kim MS, Roh SW, Bae JW (2011) Metagenomic analysis of the viral communities in fermented foods. Appl Environ Microbiol 77:1284–1289

    Article  CAS  PubMed  Google Scholar 

  • Perkins TT, Kingsley RA, Fookes MC, Gardner PP, James KD, Yu L, Assefa SA, He M, Croucher NJ, Pickard DJ, Maskell DJ, Parkhill J, Choudhary J, Thomas NR, Dougan G (2009) A strand-specific RNA-seq analysis of the transcriptome of the typhoid bacillus Salmonella typhi. PLoS Genet 5:1–13

    Article  CAS  Google Scholar 

  • Poinar HN, Schwarz C, Qi J, Shapiro B, MacPhee RDE, Buigues B, Thikonov A, Huson DH, Tomsho LP, Auch A, Rampp M, Miller W, Schuster SC (2006) Metagenomics to paleogenomics: large-scale sequencing of mammoth DNA. Science 311:392–394

    Article  CAS  PubMed  Google Scholar 

  • Qi J, Wijeratne AJ, Tomsho LP, Hu Y, Schuster SC, Ma H (2009) Characterization of meiotic crossovers and gene conversion by whole-genome sequencing in Saccharomyces cerevisiae. BMC Genet 10:475–486

    Google Scholar 

  • Qin J, Li R, Raes J et al (2010) A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464:59–67

    Article  CAS  PubMed  Google Scholar 

  • Rademaker JLW, Hoolwerf JD, Wagendorp AA, Te Giffel MC (2006) Assessment of microbial population dynamics during yoghurt and hard cheese fermentation and ripening by DNA population fingerprinting. Int Dairy J 16:457–466

    Article  CAS  Google Scholar 

  • Raes J, Bork P (2008) Molecular eco-systems biology: towards an understanding of community function. Nat Rev 6:693–699

    Article  CAS  Google Scholar 

  • Reinhardt JA, Baltrus DA, Nishimura MT, Jeck WR, Jones CD, Dangl JL (2009) De novo assembly using low-coverage short read sequence data from the rice pathogen Pseudomonas syringae pv. oryzae. Genome Res 19:294–305

    Article  CAS  PubMed  Google Scholar 

  • Riesenfeld CS, Schloss PD, Handelsman J (2004) Metagenomics: genomic analysis of microbial communities. Annu Rev Genet 38:525–552

    Article  CAS  PubMed  Google Scholar 

  • Roh SW, Kim KH, Nam YD, Chang HW, Park EJ, Bae JW (2010) Investigation of archaeal and bacterial diversity in fermented seafood using barcoded pyrosequencing. ISME J 4:1–16

    Article  CAS  PubMed  Google Scholar 

  • Rondon MR, August PR, Bettermann AD, Brady SF, Grossman TH, Liles MR, Loiacono KA, Lynch BA, MacNeil IA, Minor C, Tiong CL, Gilman M, Osburne MS, Clardy J, Handelsman J, Goodman RM (2000) Cloning the soil metagenome: a strategy for accessing the genetic and functional diversity of uncultured microorganisms. Appl Environ Microbiol 66:2541–254

    Article  CAS  PubMed  Google Scholar 

  • Rothberg JM, Hinz W, Rearick TM et al (2011) An integrated semiconductor device enabling non-optical genome sequencing. Nature 475:348–352

    Article  CAS  PubMed  Google Scholar 

  • Sakamoto N, Tanaka S, Sonomoto K, Nakayama J (2011) 16S rRNA pyrosequencing-based investigation of the bacterial community in nukadoko, a pickling bed of fermented rice bran. Int J Food Microbiol 144:352–359

    Article  CAS  PubMed  Google Scholar 

  • Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74:5463–5467

    Article  CAS  PubMed  Google Scholar 

  • Schadt EE, Turner S, Kasarskis A (2010) A window into third generation sequencing. Hum Mol Genet 19:227–240

    Article  CAS  Google Scholar 

  • Schmid CD, Bucher P (2007) ChIP-Seq data reveal nucleosome architecture of human promoters. Cell 131:831–832

    Article  CAS  PubMed  Google Scholar 

  • Sharma CM, Hoffmann S, Darfeuille F et al (2010) The primary transcriptome of the major human pathogen Helicobacter pylori. Nature 464:250–255

    Article  CAS  PubMed  Google Scholar 

  • Shendure J, Ji H (2008) Next-generation DNA sequencing. Nat Biotechnol 26:1135–1145

    Article  CAS  PubMed  Google Scholar 

  • Shendure J, Mitra RD, Varma C, Church GM (2004) Advanced sequencing technologies: methods and goals. Nat Rev Genet 5:335–345

    Article  CAS  PubMed  Google Scholar 

  • Sipiczki M (2011) Diversity, variability and fast adaptive evolution of the wine yeast (Saccharomyces cerevisiae) genome—a review. Ann Microbiol 61:85–93

    Article  Google Scholar 

  • Smith DR, Quinlan AR, Peckham HE et al (2008) Rapid whole-genome mutational profiling using next generation sequencing technologies. Genome Res 18:1638–1642

    Article  CAS  PubMed  Google Scholar 

  • Sogin ML, Morrison HG, Huber JA, Welch DM, Huse SM, Neal PR, Arrieta JM, Herndl GJ (2006) Microbial diversity in the deep sea and the underexplored “rare biosphere. Proc Natl Acad Sci USA 103:12115–12120

    Article  CAS  PubMed  Google Scholar 

  • Sorek R, Cossart P (2010) Prokaryotic transcriptomics: a new view on regulation, physiology and pathogenicity. Nat Rev Genet 11:9–16

    Article  CAS  PubMed  Google Scholar 

  • Stratford M, Bond CJ, James SA, Steels H (2002) Candida davenportii sp. nov., a potential soft drinks spoilage yeast isolated from a wasp. Int J Syst Evol Microbiol 52:1369–1375

    Article  CAS  PubMed  Google Scholar 

  • Studholme DJ, Kemen E, MacLean D, Schornack S, Aritua V, Thwaites R, Grant M, Smith J, Jones JD (2010) Genome-wide sequencing data reveals virulence factors implicated in banana Xanthomonas wilt. FEMS Microbiol Lett 310:182–192

    Article  CAS  PubMed  Google Scholar 

  • Sun Z, Chen X, Wang J, Zhao W, Shao Y, Guo Z, Zhang X, Zhuo Z, Sun T, Wang L, Meng H, Zhang H, Chen W (2011) Complete genome sequence of Lactobacillus delbrueckii subsp. bulgaricus strain ND02. J Bacteriol 193:3426–3427

    Article  CAS  PubMed  Google Scholar 

  • Travers KJ, Chin CS, Rank DR, Eid JS, Turner SW (2010) A flexible and efficient template format for circular consensus sequencing and SNP detection. Nucleic Acids Res 38:e159. doi:10.1093/nar/gkq543

  • Tringe SG, Hugenholtz P (2008) A renaissance for the pioneering 16S rRNA gene. Curr Opin Microbiol 11:442–446

    Article  CAS  PubMed  Google Scholar 

  • Turner DJ, Keane TM, Sudbery I, Adams DJ (2009) Next generation sequencing of vertebrate experimental organisms. Mamm Genome 20:327–338

    Article  CAS  PubMed  Google Scholar 

  • Tyson GW, Chapman J, Hugenholtz P et al (2004) Community structure and metabolism through reconstruction of microbial genomes from the environment. Nature 428:37–43

    Article  CAS  PubMed  Google Scholar 

  • Van Hylckama Vlieg JET, Veiga P, Zhang C, Derrien M, Zhao L (2011) Impact of microbial transformation of food on health-from fermented foods to fermentation in the gastro-intestinal tract. Curr Opin Biotechnol 22:211–219

    Article  PubMed  CAS  Google Scholar 

  • Van Vliet AH (2010) Next generation sequencing of microbial transcriptomes: challenges and opportunities. FEMS Microbiol Lett 302:1–7

    Article  PubMed  CAS  Google Scholar 

  • Veiga P, Gallini CA, Beal C, Michaud M, Dubois A, Khlebnikov A, Van Hylckama Vlieg JET, Punit S, Glickman JN, Onderdonk A, Glimcher LH, Garrett WS (2010) Bifidobacterium animalis subsp. lactis fermented milk product reduces inflammation by altering a niche for colitogenic microbes. Proc Natl Acad Sci USA 107:18132–18137

    Article  CAS  PubMed  Google Scholar 

  • Velasco R, Zharkikh A, Troggio M et al (2007) A high quality draft consensus sequence of the genome of a heterozygous grapevine variety. PLoS One 2:1–18

    Article  CAS  Google Scholar 

  • Venter JC, Adams MD, Myers EW et al (2001) The sequence of the human genome. Science 291:1304–1351

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Wang J, Ahmed Z, Bai X, Wang J (2011) Complete genome sequence of Lactobacillus kefiranofaciens ZW3. J Bacteriol 193:4280–4281

    Article  CAS  PubMed  Google Scholar 

  • Wilhelm BT, Marguerat S, Watt S, Schubart F, Wood V, Goodhead I, Penkett CJ, Rogers J, Bahmer J (2008) Dynamic repertoire of a eukaryotic transcriptome surveyed at single-nucleotide resolution. Nature 453:1239–1243

    Article  CAS  PubMed  Google Scholar 

  • Wintzingerode FV, Göbel UB, Stackebrandt E (1997) Determination of microbial diversity in environmental samples: pitfalls of PCR-based rRNA analysis. FEMS Microbiol Rev 21:213–229

    Article  Google Scholar 

  • Wittmann C, Hinzle E (2002) Genealogy profiling through strain improvement by using metabolic network analysis: metabolic flux genealogy of several generations of lysine-producing corynebacteria. Appl Environ Microbiol 68:5843–5859

    Article  CAS  PubMed  Google Scholar 

  • Wu D, Hugenholtz P, Mavromatis K et al (2009) A phylogeny-driven genomic encyclopaedia of Bacteria and Archaea. Nature 462:1056–1060

    Article  CAS  PubMed  Google Scholar 

  • Wurtzel R, Sapra F, Chen Y, Xu Y, Simmons BA, Sorek R (2010) A single-base resolution map of an archaeal transcriptome. Genome Res 20:133–141

    Article  CAS  PubMed  Google Scholar 

  • Xu Z, Wei W, Gagneur J, Perrochi F, Clauder-Munster S, Camblong J, Guffanti E, Stutz F, Huber W, Steinmetz LM (2009) Bidirectional promoters generate pervasive transcription in yeast. Nature 457:1033–1037

    Article  CAS  PubMed  Google Scholar 

  • Yang X, Dorman KS, Aluru S (2010) Reptile: representative tiling for short read eroor correction. Bioinformatics 26:2526–2533

    Article  PubMed  CAS  Google Scholar 

  • Zhou X, Ren L, Meng Q, Li Y, Yu Y, Yu J (2010) The next-generation sequencing technology and application. Protein Cell 1:520–536

    Article  CAS  PubMed  Google Scholar 

  • Züell M, van Noort V, Yus E, Chen WH, Leigh-Bell J, Michalodimitrakis K, Yamada T, Arumugam M, Doerks T, Kuhner S, Rode M, Suyama M, Schmidt S, Gavin AC, Bork P, Serrano L (2009) Transcriptome complexity in a genome-reduced bacterium. Science 326:1268–1271

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lisa Solieri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Solieri, L., Dakal, T.C. & Giudici, P. Next-generation sequencing and its potential impact on food microbial genomics. Ann Microbiol 63, 21–37 (2013). https://doi.org/10.1007/s13213-012-0478-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13213-012-0478-8

Keywords

Navigation