Skip to main content
Log in

Mangrove sediment, a new source of potential biosurfactant-producing bacteria

  • Original Article
  • Published:
Annals of Microbiology Aims and scope Submit manuscript

Abstract

Biosurfactant-producing bacteria were isolated from mangrove sediment samples collected in the southern part of Thailand by an enrichment-culture technique in which lubricating oil was the sole carbon source. A total of 1,600 colonies were obtained, which were screened for biosurfactant production using the qualitative drop-collapsing test in a mineral salts medium containing 1% of different carbon sources (commercial sugar, glucose, molasses, and used lubricating oil). Ninety-five isolates were positive for biosurfactant production based on the results of this test, among which 20 could reduce the surface tension of the 48-h culture supernatant. The phylogenetic position of these 20 isolates was evaluated by 16S rRNA gene sequence analysis. The production of biosurfactants was determined for strains representative of eight different bacterial genera. Leucobacter komagatae 183, one of the newly isolated strains showing biosurfactant production, produced extracellular biosurfactants which reduced the surface tension of the culture supernatant from 72.0 to 32.0 m/Nm. Eighteen strains released extracellular emulsifiers able to stabilize the emulsion formed. Among these, the strains L. komagatae 183 and Ochrobactrum anthropi 11/6 exhibited emulsification activities comparable to those of synthetic surfactants. Overall, the new biosurfactant-producing strains isolated in this study display promising features for the future development and use in economically efficient industrial-scale biotechnological processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abouseoud M, Maachi R, Amrane A, Boudergua S, Nabi A (2008) Evaluation of different carbon and nitrogen sources in production of biosurfactant by Pseudomonas fluorescens. Desalination 223:143–151

    Article  CAS  Google Scholar 

  • Anandaraj B, Thivakaran P (2010) Isolation and production of biosurfactant producing organism from oil spilled soil. J Biosci Tech 1:120–126

    Google Scholar 

  • Banat IM, Makkar RS, Cameotra SS (2000) Potential commercial applications of microbial surfactants. Appl Microbiol Biotechnol 53:495–508

    Article  PubMed  CAS  Google Scholar 

  • Batista SB, Mounteer AH, Amorim FR, Totola MR (2006) Isolation and characterization of biosurfactant/bioemulsifier-producing bacteria from petroleum contaminated sites. Bioresource Technol 97:868–875

    Article  CAS  Google Scholar 

  • Bernard D, Pascaline H, Jeremie JJ (1996) Distribution and origin of hydrocarbons in sediments from lagoons with fringing mangrove communities. Mar Pollut Bull 32:734–739

    Article  CAS  Google Scholar 

  • Bicca FC, Fleck LC, Ayub MAZ (1999) Production of biosurfactant by hydrocarbon degrading Rhodococcus ruber and Rhodococcus erythropolis. Rev Microbiol 30:231–236

    Article  CAS  Google Scholar 

  • Blume E, Bischoff M, Reichert JM, Moorman T, Konopka A, Turco RF (2002) Surface and subsurface microbial biomass, community structure and metabolic activity as a function of soil depth and season. Appl Soil Ecol 20:171–181

    Article  Google Scholar 

  • Bodour AA, Maier RM (2002) Biosurfactants: types, screening methods and application. In: Bitton G (ed) Encyclopedia of environmental microbiology. Wiley, New York, pp 750–769

    Google Scholar 

  • Bodour AA, Drees KP, Raina MM (2003) Distribution of biosurfactant-producing bacteria in undisturbed and contaminated arid Southwestern soils. Appl Environ Microbiol 69:3280–3287

    Article  PubMed  CAS  Google Scholar 

  • Burgos-Diaz C, Pons R, Espuny MJ, Aranda FJ, Teruel JA, Manresa A, Ortiz A, Marques AM (2011) Isolation and partial characterization of a biosurfactant mixture produced by Sphingobacterium sp. isolated from soil. J Colloid Interf Sci 361:195–204

    Article  CAS  Google Scholar 

  • Burns KA, Garrity SD, Levings SC (1993) How many years until mangrove ecosystems recover from catastrophic oil-spills. Mar Pollut Bull 26:239–248

    Article  CAS  Google Scholar 

  • Chayabutra C, Wu J, Ju LK (2001) Rhamnolipid production by Pseudomonas aeruginosa under denitrification: effects of limiting nutrients and carbon substrates. Biotechnol Bioeng 72:25–33

    Article  PubMed  CAS  Google Scholar 

  • Cooper DG (1986) Biosurfactants. Microbiol Sci 3:145–149

    PubMed  CAS  Google Scholar 

  • Cooper DG, Zajic JE, Gerson DF (1979) Production of surface active lipids by Corynebacterium lepus. Appl Environ Microbiol 37:4–10

    PubMed  CAS  Google Scholar 

  • Darvishi P, Ayatollahi S, Mowla D, Niazi A (2011) Biosurfactant production under extreme environmental conditions by an efficient microbial consortium, ERCPPI-2. Colloid Surface B 84:292–300

    Article  CAS  Google Scholar 

  • Das P, Mukherjee S, Sen R (2009) Substrate dependent production of extracelullar biosurfactant by a marine bacterium. Bioresouce Technol 100:1015–1019

    Article  CAS  Google Scholar 

  • Das P, Mukherjee S, Sivapathasekaran S, Sen R (2010) Microbial surfactants of marine origin: potentials and prospects. Adv Exp Med Biol 672:88–101

    Article  PubMed  CAS  Google Scholar 

  • Desai JD, Banat IM (1997) Microbial production of surfactants and their commercial potential. Microbiol Mol Biol Rev 61:47–64

    Google Scholar 

  • De Acevedo GT, McInerney MJ (1996) Emulsifying activity in thermophilic and extremely thermophilic microorganisms. J Ind Microbiol 16:1–7

    Article  Google Scholar 

  • From C, Hormazabal V, Hardy SP, Granum PE (2007) Cytotoxicity in Bacillus mojavensis is abolished following loss of surfactin synthesis: Implications for assessment of toxicity and food poisoning potential. Int J Food Microbiol 117:43–49

    Article  PubMed  CAS  Google Scholar 

  • Gandhimathi R, Kiran GS, Hema TA, Selvin J, Raviji TR, Shanmughapriya S (2009) Production and characterization of lipopeptide biosurfactant by a sponge-associated marine actinomycetes Nocardiopsis alba MSA10. Bioprocess Biosyst Eng 32:825–835

    Article  PubMed  CAS  Google Scholar 

  • Gudina EJ, Teixeira JA, Rodrigues LR (2010) Isolation and functional characterization of a biosurfactant produced by Lactobacillus paracasei. Colloid Surface B 76:298–304

    Article  CAS  Google Scholar 

  • Huy NQ, Jin S, Amada K, Haruki M, Huu NB, Hang DT, Ha DT, Imanaka T, Morikawa M, Kanaya S (1999) Characterization of petroleum degrading bacteria from oil-contaminated sites in Vietnam. J Biosci Bioeng 88:100–102

    Article  PubMed  CAS  Google Scholar 

  • Jachimska B, Lunkenheimer K, Malysa K (1995) Effect of position of the functional group on the equilibrium and surface properties of butyl alcohols. J Colloid Interf Sci 176:31–38

    Article  CAS  Google Scholar 

  • Karanth NGK, Deo PG, Veenanadig NK (1999) Microbial production of biosurfactant and their importance. Curr Sci 77:126–166

    Google Scholar 

  • Ke L, Wang WQ, Wong TW, Wong YS, Tam NF (2003) Removal of pyrene from contaminated sediments by mangrove microcosms. Chemosphere 52:1581–1591

    Article  PubMed  CAS  Google Scholar 

  • Kebbouche-Gana K, Gana ML, Khemili S, Naimi FF, Bouanane NA, Penninckx M, Hacene H (2009) Isolation and characterization of halophilic archaea able to produce biosurfactants. J Ind Microbiol Biotechnol 36:727–738

    Article  PubMed  CAS  Google Scholar 

  • Konishi M, Nagahama T, Fukuoka T, Morita T, Imura T, Kitamoto D, Hatada Y (2011) Yeast extract stimulates production of glycolipid biosurfactants, mannosylerythritol lipids, by Pseudozyma hubeiensis SY62. J Biosci Bioeng 111:702–705

    Article  PubMed  CAS  Google Scholar 

  • Maneerat S (2005) Biosurfactants from marine microorganisms. Songklanakarin J Sci Technol 27:1263–1272

    Google Scholar 

  • Maneerat S, Phetrong K (2007) Isolation of biosurfactant-producing marine bacteria and characteristics of selected biosurfactant. Songklanakarin J Sci Technol 29:781–791

    Google Scholar 

  • Maneerat S, Bamba T, Harada K, Kobayashi A, Yamada H, Kawai K (2006) A novel crude oil emulsifier extracted in the culture supernatant of a marine bacterium, Myroides sp. SM7. Appl Microbiol Biotechnol 70:254–259

    Article  PubMed  CAS  Google Scholar 

  • Mercade ME, Monleon L, de Andres C, Rodon I, Martinez E, Espuny MJ, Manresa A (1996) Screening and selection of surfactant-producing bacteria from waste lubricating oil. J Appl Bacteriol 81:161–166

    Article  CAS  Google Scholar 

  • Nilsson WB, Strom MS (2002) Detection and identification of bacterial pathogens of fish in kidney tissue using terminal restriction length polymorphism (T-RFLP) analysis of 16S rRNA genes. Dis Aquat Org 48:175–185

    Article  PubMed  CAS  Google Scholar 

  • Olivera NL, Commendatore MG, Delgado O, Esteves JL (2003) Microbial characterization and hydrocarbon biodegradation potential of natural bilge waste microflora. J Ind Microbiol Biotechnol 30:542–548

    Article  PubMed  CAS  Google Scholar 

  • Pansiripat S, Pornsunthorntaweea O, Rujiravanit R, Kitiyanana B, Somboonthanate P, Chavadej S (2010) Biosurfactant production by Pseudomonas aeruginosa SP4 using sequencing batch reactors: effect of oil-to-glucose ratio. Biochem Eng J 49:185–191

    Article  CAS  Google Scholar 

  • Phalakornkule C, Tanasupawat S (2006) Characterization of lactic acid bacteria from traditional Thai sausages. J Cult Collect 5:46–57

    Google Scholar 

  • Plaza GA, Zjawiony I, Banat IM (2006) Use of different methods for detection of thermophilic biosurfactant-producing bacteria from hydrocarbon contaminated and bioremediated soils. J Pet Sci Eng 50:71–77

    Article  CAS  Google Scholar 

  • Rahman KSM, Banat IM, Thahira J, Thayumanvan T, Akshmanaperumalsamy P (2002) Bioremediation of gasoline contaminated soil by a bacterial consortium amended with poultry litter, coir pith and rhamnolipid biosurfactant. Bioresource Technol 81:25–32

    Article  CAS  Google Scholar 

  • Rivardo F, Turner RJ, Allegrone G, Ceri H, Martinotti MG (2009) Anti-adhesion activity of two biosurfactants produced by Bacillus spp. prevents biofilm formation of human bacterial pathogens. Appl Microbiol Biotechnol 83:541–553

    Article  PubMed  CAS  Google Scholar 

  • Rodrigues LR, Teixeira JA, van der Meib HC, Oliveira R (2006) Isolation and partial characterization of a biosurfactant produced by Streptococcus thermophilus A. Colloid Surface B 53:105–112

    Article  CAS  Google Scholar 

  • Rosenberg E, Ron EZ (1998) Surface active polymers from the genus Acinetobacter. In: Kaplan DL (ed) Biopolymers from renewable resources. Springer, Berlin, pp 281–291

    Google Scholar 

  • Rosenberg E, Ziclerberg A, Rubinowitz C, Gutnick DL (1979) Emulsifier of Arthrobacter RAG-1: isolation and emulsifying properties. Appl Environ Microbiol 37:402–408

    PubMed  CAS  Google Scholar 

  • Ruggeri C, Franzetti A, Bestetti G, Caredda P, La Colla P, Pintus M, Sergi S, Tamburini E (2009) Isolation and characterization of surface active compound-producing bacteria from hydrocarbon-contaminated environments. Int Biodeter Biodegr 63:936–942

    Article  CAS  Google Scholar 

  • Saimmai A, Sobhon V, Maneerat S (2011) Molasses a whole medium for bosurfactants production by Bacillus strains and their application. Appl Biochem Biotech 165:315–335

    Article  CAS  Google Scholar 

  • Singh BR, Dwivedi S, Al-Khedhairy AA, Musarrat J (2011) Synthesis of stable cadmium sulfide nanoparticles using surfactin produced by Bacillus amyloliquifaciens strain KSU-109. Colloid Surface B 85:207–213

    Article  CAS  Google Scholar 

  • Skorupska A, Janczarek M, Marczak M, Mazur A, Krol J (2006) Rhizobial exopolysaccharides: genetic control and symbiotic functions. Microb Cell Fact 16:5–7

    Google Scholar 

  • Snape I, Ferguson SH, Harvey PM, Riddle MJ (2006) Investigation of evaporation and biodegradation of fuel spills in Antarctica: II Extent of natural attenuation at Casey Station. Chemosphere 63:89–98

    Article  PubMed  CAS  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: Molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  PubMed  CAS  Google Scholar 

  • Thompson JD, Gibbons TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTALX Windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882

    Article  PubMed  CAS  Google Scholar 

  • Widada J, Nojiri H, Kasuga K, Yoshida T, Habe H, Omori T (2002) Molecular detection and diversity of polycyclic aromatic hydrocarbon-degrading bacteria isolated from geographically diverse sites. Appl Microbiol Biotechnol 58:202–209

    Article  PubMed  CAS  Google Scholar 

  • Willumsen PA, Karlson U (1997) Screening of bacteria isolated from PAH-contaminated soils for production of biosurfactants and bioemulsifiers. Biodegradation 7:415–423

    Article  Google Scholar 

  • Yin B, Gua JD, Wana N (2005) Degradation of indole by enrichment culture and Pseudomonas aeruginosa Gs isolated from mangrove sediment. Int Biodeter Biodegr 56:243–248

    Article  CAS  Google Scholar 

  • Youssef NH, Dunacn KE, Nagle DP, Savage KN, Knapp RM, McInerney MJ (2004) Comparison of methods to detect biosurfactant production by diverse microorganism. J Microbiol Meth 56:339–347

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The last author would like to thank the Office of the Higher Education Commission, Thailand for financial support for this work through a grant funded under the program Strategic Scholarships for Frontier Research Network for the Ph.D. Program Thai Doctoral degree. This work was also funded by the Faculty of Agro-Industry and Graduate School, Prince of Songkla University, and further supported by the TRF/BIOTEC Special Program for Biodiversity Research and Training grant BRT R651178.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suppasil Maneerat.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saimmai, A., Tani, A., Sobhon, V. et al. Mangrove sediment, a new source of potential biosurfactant-producing bacteria. Ann Microbiol 62, 1669–1679 (2012). https://doi.org/10.1007/s13213-012-0424-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13213-012-0424-9

Keywords

Navigation