Skip to main content
Log in

Effect of Bacillus pumilus CCIBP-C5 on MusaPseudocercospora fijiensis interaction

  • Original Article
  • Published:
3 Biotech Aims and scope Submit manuscript

Abstract

The effect of antifungal activity of culture filtrate (CF) of Bacillus pumilus strain CCIBP-C5, an isolate from a phyllosphere of banana (Musa) leaves, was determined on Pseudocercospora fijiensis challenged banana plants. The CF was shown to decrease the fungal biomass and induce changes in banana plant. In this sense, at 70 days post inoculation (dpi), a lower infection index as well as a decrease in fungal biomass after 6 dpi was obtained in treated plants with respect to control ones. At the same time, changes in the activities of several enzymes related to plant defense responses, such as phenylalanine ammonia lyase, chitinases, β-1,3-glucanases and peroxidases were observed. These results indicate that B. pumilus CCIBP-C5 has a potential role for biological control of P. fijiensis possibly due to the production of antifungal metabolites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Almagro L, Gómez Ros LV, Belchi-Navarro S, Bru R, Ros Barceló A, Pedreño MA (2008) Class III peroxidases in plant defence reactions. J Exp Bot 60:377–390

    Article  Google Scholar 

  • Alvarado-Capó Y, Leiva-Mora M, Rodríguez MA, Acosta-Suárez M, Cruz-Martín M, Portal O, Kosky RG, García L, Bermúdez I, Padrón J (2003) Early evaluation of Black leaf streak resistance by using mycelial suspensión of Mycosphaerella fijiensis. In: Jacome L, Lepoivre P, Martin D, Ortiz R, Romero R, Escalante JV (eds) Mycosphaerella leaf spot diseases of bananas: present status and outlook. INIBAP, Montpellier, pp 169–175

    Google Scholar 

  • Arzanlou M, Abeln EC, Kema GH, Waalwijk C, Carlier J, de Vries I (2007) Molecular diagnostics for the Sigatoka disease complex of banana. Phytopathology 97(9):1112–1118

    Article  CAS  Google Scholar 

  • Beric T, Kojic M, Stankovic S, Topisirovic L, Degrassi G, Myers M, Venturi V, Fira D (2012) Antimicrobial activity of Bacillus sp. natural isolates and their potential use in the biocontrol of phytopathogenic bacteria. Food Technol. Biotechnol 50(1):25–31

    CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding. Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  • Cakmak I, Strboe D, Marschner H (1993) Activities of hydrogen peroxides scavenging enzymes in germinating wheat seeds. J Exp Bot 44:127–132

    Article  CAS  Google Scholar 

  • Carlier J, De Waele D, Escalant JV (2002) Global evaluation of Musa germplasm for resistance to Fusarium wilt, Mycosphaerella leaf spot diseases, and nematodes: In-depth evaluation. In: Vezina A, Picq C (eds) INIBAP technical guidelines, vol 6. INIBAP, Montpellier, pp 37–48

    Google Scholar 

  • Castaño Zapata J (2006) Evaluación in vitro de extractos vegetales sobre Mycosphaerella fijiensis Morelet. Agronomía 14:37–50

    Google Scholar 

  • Castro O, Bach E (2004) Increased production of β-1,3 glucanase and proteins in Bipolaris sorokiniana pathosystem treated using commercial xanthan gum. Plant Physiol Biochem 42:165–169

    Article  CAS  Google Scholar 

  • Caverzan A, Passaia G, Barcellos S, Werner C, Lazzarotto F, Margis-Pinheiro M (2012) Plant responses to stresses: role of ascorbate peroxidase in the antioxidant protection. Genet Mol Biol 35(4):1011–1019

    Article  CAS  Google Scholar 

  • Cawoy H, Bettiol W, Fickers P, Ongena M (2011) Bacillus-based biological control and plant diseases. In: Stoytcheva M (ed) Pesticides in the modern world-pesticides use and management. InTech Europe, Rijeka, pp 273–303

    Google Scholar 

  • Ceballos I, Mosquera S, Angulo M, Mira J, Argel L, Uribe-Velez D, Romero-Tabarez M, Orduz-Peralta S, Villegas V (2012) Cultivable bacteria populations associated with leaves of banana and plantain plants and their antagonistic activity against Mycosphaerella fijiensis. Microb Ecol 64:641–653

    Article  Google Scholar 

  • Chowdappa P, Mohan Kumar SP, Jyothi M, Upreti KK (2013) Growth stimulation and induction of systemic resistance in tomato against early and late blight by Bacillus subtilis OTPB1 or Trichoderma harzianum OTPB3. Biol Control 65:109–117

    Article  Google Scholar 

  • Chowdhury SP, Uhl J, Grosch R, Alqueres S, Pittroff S, Dietel K, Schmitt-Kopplinn P, Borriss R, Hartmann A (2015) Cyclic lipopeptides of Bacillus amyloliquefaciens subsp. plantarum colonizing the lettuce rhizosphere enhance plant defence responses towards the bottom rot pathogen Rhizoctonia solani. Mol Plant Microb Interact 28:17–18

    Article  Google Scholar 

  • Churchill A (2011) Mycosphaerella fijiensis, the black leaf streak pathogen of banana: progress towards understanding pathogen biology and detection, disease development, and the challenges of control. Mol Plant Pathol 12:307–328

    Article  CAS  Google Scholar 

  • Compant S, Duffy B, Nowak J, Clément C, Barka E (2005) Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. Appl and Environ Microbiol 71(9):4951–4959. https://doi.org/10.1128/AEM.71.9.4951-4959

    Article  CAS  Google Scholar 

  • Cruz-Martín M, Acosta-Suárez M, Poveda I, Leiva-Mora L, Roque B, Alvarado-Capó Y (2012) Actividad antifúngica in vitro de bacterias frente a Mycosphaerella fijiensis mediada por metabolitos difundidos y volátiles. Biotecnología Vegetal 12(3):179–182

    Google Scholar 

  • Cruz-Martín M, Acosta-Suárez M, Roque B, Pichardo T, Castro R, Alvarado-Capó Y (2016) Diversidad de cepas bacterianas de la filosfera de Musa spp. con actividad antifúngica frente a Mycosphaerella fijiensis Morelet. Biotecnología Vegetal 16(1):53–61

    Google Scholar 

  • Cruz-Martín M, Acosta-Suárez M, Mena E, Roque B, Pichardo T, Alvarado-Capó Y (2017) Antifungal activity of Musa phyllosphere Bacillus pumilus strain against Mycosphaerella fijiensis Morelet. Trop Plant Pathol 42(2):121–125. https://doi.org/10.1007/s40858-017-0139-3

    Article  Google Scholar 

  • Desoignies N, Schramme F, Ongena M, Legrève A (2013) Systemic resistance induced by Bacillus lipopeptides in Beta vulgaris reduces infection by the rhizomania disease vector Polymyxa betae. Mol Plant Pathol 14:416–421

    Article  CAS  Google Scholar 

  • Ehsani-Moghaddam B, Charles MT, Carisse O, Khanizadeh Sh (2006) Superoxide dismutase responses of strawberry cultivars to infection by Mycosphaerella fragariae. J Plant Physiol 163:147–153

    Article  CAS  Google Scholar 

  • Falardeau J, Wise C, Novitsky L, Avis TJ (2013) Ecological and mechanistic insights into the direct and indirect antimicrobial properties of Bacillus subtilis lipopeptides on plant pathogens. J Chem Ecol 39:869–878

    Article  CAS  Google Scholar 

  • Ferreira RB, Monteiro S, Freitas R, Santos CN, Chen Z, Batista LM, Duarte J, Borges A, Teixeira AR (2007) The role of plant defence proteins in fungal pathogenesis. Mol Plant Pathol 8(5):677–700

    Article  CAS  Google Scholar 

  • Fischer SE, Jofré EC, Cordero PV, Gutiérrez-Manero FJ, Mori GB (2010) Survival of native Pseudomonas in soil and wheat rhizosphere and antagonist activity against plant pathogenic fungi. Antonie Van Leeuwenhoek 97:241–251

    Article  Google Scholar 

  • Fu G, Huang S, Ye Y, Wu Y, Cen Z, Lin S (2010) Characterization of a bacterial biocontrol strain B106 and its efficacy in controlling banana leaf spot and post-harvest anthracnose diseases. Biol Control 55:1–10

    Article  Google Scholar 

  • Furuya S, Mochizuki M, Aoki Y, Kobayashi H, Takayanagi T, Shimizu M, Suzuki S (2011) Isolation and characterization of Bacillus subtilis KS1 for the biocontrol of grapevine fungal diseases. Biocontrol Sci Technol 21:705–720

    Article  Google Scholar 

  • García-Gutiérrez L, Zeriouh H, Romero D, Cubero J, de Vicente A, Pérez-García A (2013) The antagonistic strain Bacillus subtilis UMAF6639 also confers protection to melon plants against cucurbit powdery mildew by activation of jasmonate and salicylic acid dependent defence responses. Microbial Biotechnol 6:264–274

    Article  Google Scholar 

  • González R, Bustamante E, Shannon P (1996) Evaluación de microorganismos quitinolíticos en el control de la Sigatoka negra (Mycosphaerella fijiensis) en banano. Manejo Integrado Plagas 40:12–16

    Google Scholar 

  • Gutierrez-Monsalve JA, Mosquera S, González-Jaramillo LM, Mira JJ, Villegas-Escobar V (2015) Effective control of black Sigatoka disease using a microbial fungicide based on Bacillus subtilis EA-CB0015 culture. Biol Control 87:39–46

    Article  Google Scholar 

  • Guzmán M, Orozco-Santos M, Pérez-Vicente L (2013) Sigatoka leaf spot diseases of bananas: dispersion, impact and evolution of management strategies in Latin American-Caribbean region. XX Reunião Internacional da Associação para a Cooperação em Pesquisa e Desenvolvimento Integral das Musáceas (Bananas e Plátanos) 9 a 13 de setembro. Acorbat. Brasil. Fortaleza, CE

  • Hammerschmidt R (2007) Introduction: definitions and some history. In: Walters D, Newton A, Lyon G (eds.) Induced resistance for plant defence, Chapter 1. Blackwell, pp 1–9. ISBN: 978-1-4051-3447-7

  • Hariprasad P, Divakara ST, Niranjana SR (2011) Isolation and characterization of chitinolytic rhizobacteria for the management of Fusarium wilt in tomato. Crop Prot 30:1606–1612

    Article  Google Scholar 

  • Hinarejos E, Castellano M, Rodrigo I, Belles JM, Conejero V, Lopez-Gresa MP, Lisón P (2016) Bacillus subtilis IAB/BS03 as a potential biological control agent. Eur J Plant Pathol 146:597–608

    Article  CAS  Google Scholar 

  • Jain A, Singh A, Singh S, Singh V, Singh HB (2015) Comparative proteomic analysis in pea treated with microbial consortia of beneficial microbes reveals changes in the protein network to enhance resistance against Sclerotinia sclerotiorum. J Plant Physiol 182:79–94

    Article  CAS  Google Scholar 

  • Jiménez J, Moreno LP, Magnitskiy S (2012) Respuesta de las plantas a estrés por inundación. Una revisión. Revista Colombiana de Ciencias Hortícolas 6(1):96–109

    Article  Google Scholar 

  • Johanson LH, Jeger MJ (1993) Use of PCR for detection of Mycosphaerella fijiensis and musicola, the causal agents of Sigatoka leaf spots in banana and plantain. Mycol Res 97:670–674

    Article  Google Scholar 

  • Jourdan E, Henry G, Duby F, Dommes J, Barthelemy JP, Thonart P, Ongena M (2009) Insights into the defense related events occurring in plant cells following perception of surfactin-type lipopeptide from Bacillus subtilis. Mol Plant Microbe Interact 22:456–468

    Article  CAS  Google Scholar 

  • Kang SM, Radhakrishnan R, Lee IJ (2015) Bacillus amyloliquefaciens subsp. plantarum GR53, a potent biocontrol agent resists Rhizoctonia disease on Chinese cabbage through hormonal and antioxidants regulation. World J Microbiol Biotechnol 31:1517–1527

    Article  CAS  Google Scholar 

  • Kloepper JW, Ryu CM (2006) Bacterial endophytes as elicitors of induced systemic resistance. In: Schulz B, Boyle C, Sieber TN (eds) Microbial root endophytes. Springer, Berlin, pp 33–52

    Chapter  Google Scholar 

  • Kloepper JW, Ryu CM, Zhang S (2004) Induced systemic resistance and promotion of plant growth by Bacillus spp. Phytopathology 94:1259–1266

    Article  CAS  Google Scholar 

  • Leiva-Mora M, Alvarado-Capó Y, Acosta-Suárez M, Cruz-Martín M, Sánchez-García C, Roque B (2010) Protocolo para la inoculación artificial de plantas de Musa spp. con Mycosphaerella fijiensis y evaluación de su respuesta mediante variables epifitiológicas y componentes de la resistencia. Biotecnología Vegetal 10(2):79–88

    Google Scholar 

  • Malfanova N, Frazil L, Lugtenberg B, Chebotar V, Ongena M (2012) Cyclic lipopeptide profile of the plant-beneficial endophytic bacterium Bacillus subtilis HC8. Arch Microbiol 194:893–899

    Article  CAS  Google Scholar 

  • Marcano IE, Díaz-Alcántara C, Seco V, Urbano B, González-Andrés F (2016) Explain the reduction in the incidence of black Sigatoka (Mycosphaerella fijiensis) in banana plants inoculated with bacteria isolated from banana tree roots in the Dominican Republic. In: González-Andrés F, James E (eds) Biological nitrogen fixation and beneficial plant–microbe interactions. Springer, Cham, pp 155–170. https://doi.org/10.1007/978-3-319-32528-614

    Chapter  Google Scholar 

  • Mena E, Cruz-Martín M, Acosta-Suárez M, Roque B, Pichardo T, Alvarado-Capó Y (2015) Respuesta histoquímica de plantas de banano cv. ‘Grande naine’ inoculadas con Mycosphaerella fijiensis y filtrado de cultivo de Bacillus pumilus CCIBP-C5. Biotecnología Vegetal 15(2):97–103

    Google Scholar 

  • Murray M, Thompson WF (1980) Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res 8(19):4321–4325

    Article  CAS  Google Scholar 

  • Nakano Y, Asada K (1987) Purification of ascorbate peroxidase in spinach chloroplasts: its inactivation in ascorbate-depleted medium and reactivation by monodehydroascorbate radical. Plant Cell Physiol 28:131–140

    CAS  Google Scholar 

  • Narendra-Babu A, Jogaiah S, Ito SI, Kestur-Nagaraj A, Tran LSP (2015) Improvement of growth, fruit weight and early blight disease protection of tomato plants by rhizosphere bacteria is correlated with their beneficial traits and induced biosynthesis of antioxidant peroxidase and polyphenol oxidase. Plant Sci 231:62–73

    Article  CAS  Google Scholar 

  • Ongena M, Jacques P (2008) Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trends Microbiol 16:115–125

    Article  CAS  Google Scholar 

  • Ongena M, Duby F, Jourdan E, Beaudry T, Jadin V, Dommes J, Thonart P (2005) Bacillus subtilis M4 decrease plant susceptibility towards fungal pathogens by increasing host resistance associated with differential gene expression. Appl Microbiol Biotechnol 67(5):692–698

    Article  CAS  Google Scholar 

  • Ongena M, Jourdan E, Adam A, Paquot M, Brans A, Joris B (2007) Surfactin and fengycin lipopeptidesof Bacillus subtilis as elicitors of induced systemic resistance in plants. Environ Microbiol 9:1084–1090

    Article  CAS  Google Scholar 

  • Orellana P (1994) Tecnología para la micropropagación in vitro de clones de Musa spp. Tesis para aspirar por el grado científico de doctor en Ciencias Agrícolas. UCLV, IBP, Santa Clara, Cuba

  • Pan SQ, Ye XS, Kuc J (1991) Association of β-1,3 glucanase activity and isoform pattern with systemic resistance to blue mold in tobacco induced by stem injection with Peronospora tabacina or leaf inoculation with tobacco mosaic virus. Physiol Mol Plant Pathol 39:25–39

    Article  CAS  Google Scholar 

  • Pereira de Melo F, Fiore M, de Moraes L, Silva-Stenico M, Scramin S, Teixeira M, de Melo I (2009) Antifungal compound produced by the Cassava endophyte Bacillus pumilus MAIIIM4A. Sci Agric 66(5):583–592

    Article  CAS  Google Scholar 

  • Perez-Garcia A, Romero D, de Vicente A (2011) Plant protection and growth stimulation by microorganisms: biotechnological applications of Bacilli in agriculture. Curr Opin Biotechnol 22:187–193. https://doi.org/10.1016/j.copbio.2010.12.003

    Article  CAS  Google Scholar 

  • Radhakrishnan R, Hashem A, Abd Allah EF (2017) Bacillus: a biological tool for crop improvement through bio-molecular changes in adverse environments. Front Physiol 8:667

    Article  Google Scholar 

  • Rahman A, Uddin W, Wenner NG (2015) Induced systemic resistance responses in perennial ryegrass against Magnaporthe oryzae elicited by semi-purified surfactin lipopeptides and live cells of Bacillus amyloliquefaciens. Mol Plant Pathol 16:546–558

    Article  CAS  Google Scholar 

  • Rose JK, Kyung-Sik H, Darvill A, Albersheim P (2002) Molecular cloning and characterization of glucanase inhibitor proteins: coevolution of a counter defense mechanism by plant patogens. Plant Cell 14:1329–1345

    Article  CAS  Google Scholar 

  • Ross WW, Sederoff RR (1992) Phenilalanine ammnia-lyase from loblolly pine: purification of the enzyme and isolation of complementary DNA clone. Plant Physiol 98:380–386

    Article  Google Scholar 

  • Sánchez-García C, Alvarado-Capó Y, Cruz-Martín M, Acosta-Suárez M, Leiva-Mora M, Roque B (2010) Detección de compuestos bioquímicos relacionados con la respuesta defensiva en plantas de Musa spp. inoculadas artificialmente con Mycosphaerella fijiensis. Biotecnología Vegetal 10(2):89–97

    Google Scholar 

  • Sgarbi E, Fornasiero RB, Lins AP, Bonatti PM (2003) Phenol metabolism is differentially affected by ozone in two cell lines from grape (Vitis vinifera L.) leaf. Plant Sci 165:951–957

    Article  CAS  Google Scholar 

  • Sharma P, Bhushan A, Shanker R, Pessarakli M (2012) Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J Bot. https://doi.org/10.1155/2012/217037

    Google Scholar 

  • Shigeoka S, Ishikawa T, Tamoi M, Miyagawa Y, Takeda T, Yabuta Y, Yoshimura K (2002) Regulation and function of ascorbate peroxidase isoenzymes. J Exp Bot 53:1305–1319

    Article  CAS  Google Scholar 

  • Ślesak I, Libik M, Karpinska B, Karpinski S, Miszalski Z (2007) The role of hydrogen peroxide in regulation of plant metabolism and cellular signalling in response to environmental stresses. Acta Biochim Pol 54(1):39–50

    Google Scholar 

  • Stein T (2005) Bacillus subtilis antibiotics: structures, syntheses and specific functions. Mol Microbiol 56:845–857

    Article  CAS  Google Scholar 

  • Tikhonov VE, Lopez-Llorca LV, Salinas J, Jansson HB (2002) Purification and characterization of chitinases from the nematophagous fungi Verticillium chlamydosporium and V. suchlasporium. Fungal Genet Biol 35:67–78

    Article  CAS  Google Scholar 

  • Torres J, Calderón H, Rodríguez-Arango E, Morales JG, Arango R (2012) Differential induction of pathogenesis-related proteins in banana in response to Mycosphaerella fijiensis infection. Eur J Plant Pathol 133:887–898

    Article  CAS  Google Scholar 

  • van Loon LC (2008) Manipulating the plant’s innate immune system by inducing resistance. Phytoparasitica 36:103–106

    Article  Google Scholar 

  • van Loon LC, Glick GR (2004) Increased plant fitness by rhizobacteria. In: Sandermann H (ed) Molecular ecotoxicology of plants, vol 170. Springer, Berlin, pp 177–205

    Chapter  Google Scholar 

  • van Loon LC, Van Strien EA (1999) The families of pathogenesis-related proteins, their activities, and comparative analysis of PR-1 type proteins. Physiol Mol Plant Pathol 55:85–97

    Article  Google Scholar 

  • van Loon LC, Rep M, Pieterse CM (2006) Significance of inducible defense-related proteins in infected plants. Annu Rev Phytopathol 44:135–162

    Article  Google Scholar 

  • Vance C, Kirk TK, Sherwood RT (1980) Lignification as a mechanism of disease resistance. Annu Rev Phytopathol 18:259–288

    Article  CAS  Google Scholar 

  • Yamamoto S, Shiraishi S, Suzuki S (2014) Are cyclic lipopeptides produced by Bacillus amyloliquefaciens S13-3 responsible for the plant defence response in strawberry against Colletotrichum gloeosporioides? Lett Appl Microbiol 60:379–386

    Article  Google Scholar 

  • Yang R, Fan X, Cai X, Hu F (2015) The inhibitory mechanisms by mixtures of two endophytic bacterial strains isolated from Ginkgo biloba against pepper phytophthora blight. Biol Control 85:59–67

    Article  Google Scholar 

  • Yazici S, Yanar Y, Karaman I (2011) Evaluation of bacteria for biological control of early blight disease of tomato. Afr J Biotechnol 10(9):1573–1577

    Google Scholar 

  • Yi H-S, Yang JW, Ryu C-M (2013) ISR meets SAR outside: additive action of the endophyte Bacillus pumilus INR7 and the chemical inducer, benzothiadiazole, on induced resistance against bacterial spot in field-grown pepper. Front Plant Sci 4:122

    Article  Google Scholar 

Download references

Acknowledgements

We thanks PhD. Roberto Vázquez and Miguel Tzec who helped develop the qPCR assays. The authors are also grateful to PhD Milady Mendoza and Mairenys Concepción for their comments and revisions of the manuscript. Partial financial support for this work was an output of a scholarship from the Food Security Center from the University of Hohenheim, which is part of the DAAD (German Academic Exchange Service) program “exceed” and in cooperation with the host PhD Blondy Canto Canché at the Centro de Investigación Científica de Yucatán (CICY), México.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mileidy Cruz-Martín.

Ethics declarations

Conflict of interest

The authors declare that they do not have conflict of opposing view of concern.

Ethical standard

This article does not contain any researches with human or animals have acted of any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cruz-Martín, M., Acosta-Suárez, M., Mena, E. et al. Effect of Bacillus pumilus CCIBP-C5 on MusaPseudocercospora fijiensis interaction. 3 Biotech 8, 122 (2018). https://doi.org/10.1007/s13205-018-1152-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13205-018-1152-z

Keywords

Navigation