Skip to main content
Log in

Simple Neumann eigenvalues for the Laplace operator in a domain with a small hole

A functional analytic approach

  • Published:
Revista Matemática Complutense Aims and scope Submit manuscript

Abstract

Let \({\mathbb{A}}(\epsilon)\) be the annular domain obtained by removing from a bounded open domain \({\mathbb{I}}^{o}\) of ℝn a small cavity of size ϵ>0. Then we assume that for some natural index l, \(\lambda_{l}[{\mathbb{I}}^{o}]>0\) is a simple Neumann eigenvalue of −Δ in \({\mathbb{I}}^{o}\), and we show that there exists a real valued real analytic function \(\hat{\lambda }_{l}(\cdot,\cdot)\) defined in an open neighborhood of (0,0) in ℝ2 such that the lth Neumann eigenvalue \(\lambda_{l}[{\mathbb{A}}(\epsilon)]\) of −Δ in \({\mathbb{A}}(\epsilon)\) equals \(\hat{\lambda}_{l}(\epsilon,\kappa_{n}\epsilon\log\epsilon)\) and such that \(\hat{\lambda}_{l}(0,0)= \lambda_{l}[{\mathbb{I}}^{o}]\). Here κ n =1 if n is even and κ n =0 if n is odd. Thus in particular, we show that if n is even \(\lambda_{l}[{\mathbb {A}}(\epsilon)]\) can be expanded into a convergent double series of powers of ϵ and ϵlogϵ and that if n is odd \(\lambda_{l}[{\mathbb{A}}(\epsilon)]\) can be expanded into a convergent series of powers of ϵ. Then related statements have been proved for corresponding eigenfunctions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agmon, S., Douglis, A., Nirenberg, L.: Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions I. Commun. Pure Appl. Math. 12, 623–727 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ammari, H., Kang, H., Lim, M., Zribi, H.: Layer potential techniques in spectral analysis. Part I: Complete asymptotic expansions for eigenvalues of the Laplacian in domains with small inclusions. Trans. Am. Math. Soc. 362, 2901–2922 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  3. Cartan, H.: Cours de Calcul Différentiel. Hermann, Paris (1967)

    Google Scholar 

  4. Colton, D., Kress, R.: Integral Equation Methods in Scattering Theory. Krieger, Malabar (1992)

    Google Scholar 

  5. Dalla Riva, M., Lanza de Cristoforis, M.: A perturbation result for the layer potentials of general second order differential operators with constant coefficients. J. Appl. Funct. Anal. 5, 10–30 (2010)

    MathSciNet  MATH  Google Scholar 

  6. Dautray, R., Lions, J.L.: Mathematical Analysis and Numerical Methods for Science and Technology. Physical Origins and Classical Methods, vol. 1. Springer, Berlin, (1990). With the collaboration of Philippe Bénilan, Michel Cessenat, André Gervat, Alain Kavenoky and Hélène Lanchon. Translated from the French by Ian N. Sneddon. With a preface by Jean Teillac

    Book  Google Scholar 

  7. Deimling, K.: Nonlinear Functional Analysis. Springer, Berlin (1985)

    MATH  Google Scholar 

  8. Folland, G.B.: Introduction to Partial Differential Equations, 2nd edn. Princeton University Press, Princeton (1995)

    MATH  Google Scholar 

  9. Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order. Springer, Berlin (1983)

    MATH  Google Scholar 

  10. Hille, E., Phillips, R.S.: Functional Analysis and Semigroups. Amer. Math. Soc. Colloq. Publ., vol. 31 (1957)

    MATH  Google Scholar 

  11. Gohberg, I.C., Sigal, E.I.: An operator generalization of the logarithmic residue theorem and Rouché’s theorem. Mat. Sb. 84, 607–642 (1971)

    MathSciNet  Google Scholar 

  12. Lamberti, P.D., Lanza de Cristoforis, M.: Analyticity results for the eigenvalues of compact selfadjoint operators. Int. J. Differ. Equ. Appl. 3, 427–438 (2001)

    MathSciNet  MATH  Google Scholar 

  13. Lamberti, P.D., Lanza de Cristoforis, M.: A real analyticity result for symmetric functions of the eigenvalues of a domain dependent Dirichlet problem for the Laplace operator. J. Nonlinear Convex Anal. 5, 19–42 (2004)

    MathSciNet  MATH  Google Scholar 

  14. Lanza de Cristoforis, M.: Asymptotic behavior of the solutions of a nonlinear Robin problem for the Laplace operator in a domain with a small hole: a functional analytic approach. Complex Var. Elliptic Equ. 52, 945–977 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  15. Lanza de Cristoforis, M.: Properties and Pathologies of the composition and inversion operators in Schauder spaces. Rend. Accad. Naz. Sci. XL 15, 93–109 (1991)

    MathSciNet  MATH  Google Scholar 

  16. Lanza de Cristoforis, M., Rossi, L.: Real analytic dependence of simple and double layer potentials for the Helmholtz equation upon perturbation of the support and of the density. In: Kilbas, A.A., Rogosin, S.V. (eds.) Analytic Methods of Analysis and Differential Equations, AMADE 2006, pp. 193–220. Cambridge Scientific Publishers, Cambridge (2008)

    Google Scholar 

  17. Lanza de Cristoforis, M., Rossi, L.: Real analytic dependence of simple and double layer potentials upon perturbation of the support and of the density. J. Integral Equ. Appl. 16, 137–174 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  18. Lebedev, N.N.: Special Functions and Their Applications. Dover, New York (1972). Revised edition, translated from the Russian and edited by Richard A. Silverman. Unabridged and corrected republication

    MATH  Google Scholar 

  19. Maz’ya, V.G., Nazarov, S.A., Plamenewskii, B.A.: Asymptotic Theory of Elliptic Boundary Value Problems in Singularly Perturbed Domains, I, II. Oper. Theory Adv. Appl., vols. 111, 112. Birkhäuser, Basel (2000) (translation of the original in German published by Akademie Verlag 1991)

  20. Miranda, C.: Partial Differential Equations of Elliptic Type, 2nd edn. Springer, Berlin (1970)

    MATH  Google Scholar 

  21. Ozawa, S.: Spectra of domains with small spherical Neumann boundary. Proc. Jpn. Acad., Ser. A, Math. Sci. 58(5), 190–192 (1982)

    Article  MATH  Google Scholar 

  22. Prodi, G., Ambrosetti, A.: Analisi non lineare. Editrice Tecnico Scientifica, Pisa (1973)

    MATH  Google Scholar 

  23. Rauch, J., Taylor, M.: Potential and scattering theory on wildly perturbed domains. J. Funct. Anal. 18, 27–59 (1975)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Massimo Lanza de Cristoforis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lanza de Cristoforis, M. Simple Neumann eigenvalues for the Laplace operator in a domain with a small hole. Rev Mat Complut 25, 369–412 (2012). https://doi.org/10.1007/s13163-011-0081-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13163-011-0081-8

Keywords

Mathematics Subject Classification (2000)

Navigation