Skip to main content
Log in

MicroRNA208 family in cardiovascular diseases: therapeutic implication and potential biomarker

  • Mini Review
  • Published:
Journal of Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

Cardiovascular disease remains to be a severe and yet unsolved health problem that has become a leading threat to human health. It is urgent to explore early diagnostic biomarker and innovative therapeutic strategy to prevent the progression of cardiovascular diseases. MicroRNAs (miRNAs) are conserved endogenous, non-coding small RNAs that are essential modulators of gene expression by inhibiting translation or promoting degradation of messenger RNAs (mRNAs). A large range of functions has been attributed to miRNAs, such as cell proliferation, differentiation, apoptosis, and invasion. So far, miRNAs have shown characteristic changes in expression during the process of cardiovascular disease that may act as potential biomarkers. A series of studies have clearly discovered that the miR-208 family is closely associated with the development of cardiac diseases, such as myocardial hypertrophy, cardiac fibrosis, myocardial infarction, arrhythmia, and heart failure. In this review, we will highlight novel insights into miR-208 family functions and discuss it as potential biomarker and therapeutic target in cardiovascular diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Ai J, Zhang R, Li Y, Pu J, Lu Y, Jiao J, Li K, Yu B, Li Z, Wang R, Wang L, Li Q, Wang N, Shan H, Li Z, Yang B (2010) Circulating microRNA-1 as a potential novel biomarker for acute myocardial infarction. Biochem Biophys Res Commun 391:73–77

    Article  CAS  PubMed  Google Scholar 

  2. Berezikov E, Guryev V, van de Belt J, Wienholds E, Plasterk RH, Cuppen E (2005) Phylogenetic shadowing and computational identification of human microRNA genes. Cell 120:21–24

    Article  CAS  PubMed  Google Scholar 

  3. Bernardo BC, Charchar FJ, Lin RC, McMullen JR (2012) A microRNA guide for clinicians and basic scientists: background and experimental techniques. Heart Lung Circ 21:131–142

    Article  CAS  PubMed  Google Scholar 

  4. Bostjancic E, Zidar N, Stajer D, Glavac D (2010) MicroRNAs miR-1, miR-133a, miR-133b and miR-208 are dysregulated in human myocardial infarction. Cardiology 115:163–169

    Article  CAS  PubMed  Google Scholar 

  5. Callis TE, Pandya K, Seok HY, Tang RH, Tatsuguchi M, Huang ZP, Chen JF, Deng Z, Gunn B, Shumate J, Willis MS, Selzman CH, Wang DZ (2009) MicroRNA-208a is a regulator of cardiac hypertrophy and conduction in mice. J Clin Invest 119:2772–2786

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Chen X, Ba Y, Ma L, Cai X, Yin Y, Wang K, Guo J, Zhang Y, Chen J, Guo X, Li Q, Li X, Wang W, Zhang Y, Wang J, Jiang X, Xiang Y, Xu C, Zheng P, Zhang J, Li R, Zhang H, Shang X, Gong T, Ning G, Wang J, Zen K, Zhang J, Zhang CY (2008) Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res 18:997–1006

    Article  CAS  PubMed  Google Scholar 

  7. Corsten MF, Dennert R, Jochems S, Kuznetsova T, Devaux Y, Hofstra L, Wagner DR, Staessen JA, Heymans S, Schroen B (2010) Circulating MicroRNA-208b and MicroRNA-499 reflect myocardial damage in cardiovascular disease. Circ Cardiovasc Genet 3:499–506

    Article  PubMed  Google Scholar 

  8. Devaux Y, Vausort M, Goretti E, Nazarov PV, Azuaje F, Gilson G, Corsten MF, Schroen B, Lair ML, Heymans S, Wagner DR (2012) Use of circulating microRNAs to diagnose acute myocardial infarction. Clin Chem 58:559–567

    Article  CAS  PubMed  Google Scholar 

  9. Divakaran V, Mann DL (2008) The emerging role of microRNAs in cardiac remodeling and heart failure. Circ Res 103:1072–1083

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Ebert MS, Sharp PA (2010) MicroRNA sponges: progress and possibilities. RNA 16:2043–2050

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Ellinor PT, Lunetta KL, Glazer NL, Pfeufer A, Alonso A, Chung MK, Sinner MF, de Bakker PI, Mueller M, Lubitz SA, Fox E, Darbar D, Smith NL, Smith JD, Schnabel RB, Soliman EZ, Rice KM, Van Wagoner DR, Beckmann BM, van Noord C, Wang K, Ehret GB, Rotter JI, Hazen SL, Steinbeck G, Smith AV, Launer LJ, Harris TB, Makino S, Nelis M, Milan DJ, Perz S, Esko T, Kottgen A, Moebus S, Newton-Cheh C, Li M, Mohlenkamp S, Wang TJ, Kao WH, Vasan RS, Nothen MM, MacRae CA, Stricker BH, Hofman A, Uitterlinden AG, Levy D, Boerwinkle E, Metspalu A, Topol EJ, Chakravarti A, Gudnason V, Psaty BM, Roden DM, Meitinger T, Wichmann HE, Witteman JC, Barnard J, Arking DE, Benjamin EJ, Heckbert SR, Kaab S (2010) Common variants in KCNN3 are associated with lone atrial fibrillation. Nat Genet 42:240–244

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Fichtlscherer S, De Rosa S, Fox H, Schwietz T, Fischer A, Liebetrau C, Weber M, Hamm CW, Roxe T, Muller-Ardogan M, Bonauer A, Zeiher AM, Dimmeler S (2010) Circulating microRNAs in patients with coronary artery disease. Circ Res 107:677–684

    Article  CAS  PubMed  Google Scholar 

  13. Gidlof O, Andersson P, van der Pals J, Gotberg M, Erlinge D (2011) Cardiospecific microRNA plasma levels correlate with troponin and cardiac function in patients with ST elevation myocardial infarction, are selectively dependent on renal elimination, and can be detected in urine samples. Cardiology 118:217–226

    Article  PubMed  Google Scholar 

  14. Gidlof O, Smith JG, Miyazu K, Gilje P, Spencer A, Blomquist S, Erlinge D (2013) Circulating cardio-enriched microRNAs are associated with long-term prognosis following myocardial infarction. BMC Cardiovasc Disord 13:12

    Article  PubMed Central  PubMed  Google Scholar 

  15. Grunweller A, Hartmann RK (2007) Locked nucleic acid oligonucleotides: the next generation of antisense agents? BioDrugs 21:235–243

    Article  PubMed  Google Scholar 

  16. Henshall DC (2013) Antagomirs and microRNA in status epilepticus. Epilepsia 54(Suppl 6):17–19

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Heymans S, Corsten MF, Verhesen W, Carai P, van Leeuwen RE, Custers K, Peters T, Hazebroek M, Stoger L, Wijnands E, Janssen BJ, Creemers EE, Pinto YM, Grimm D, Schurmann N, Vigorito E, Thum T, Stassen F, Yin X, Mayr M, de Windt LJ, Lutgens E, Wouters K, de Winther MP, Zacchigna S, Giacca M, van Bilsen M, Papageorgiou AP, Schroen B (2013) Macrophage microRNA-155 promotes cardiac hypertrophy and failure. Circulation 128:1420–1432

    Article  CAS  PubMed  Google Scholar 

  18. Ji X, Takahashi R, Hiura Y, Hirokawa G, Fukushima Y, Iwai N (2009) Plasma miR-208 as a biomarker of myocardial injury. Clin Chem 55:1944–1949

    Article  CAS  PubMed  Google Scholar 

  19. Krichevsky AM, Gabriely G (2009) miR-21: a small multi-faceted RNA. J Cell Mol Med 13:39–53

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Kuwabara Y, Ono K, Horie T, Nishi H, Nagao K, Kinoshita M, Watanabe S, Baba O, Kojima Y, Shizuta S, Imai M, Tamura T, Kita T, Kimura T (2011) Increased microRNA-1 and microRNA-133a levels in serum of patients with cardiovascular disease indicate myocardial damage. Circ Cardiovasc Genet 4:446–454

    Article  CAS  PubMed  Google Scholar 

  21. Latronico MV, Condorelli G (2011) Therapeutic use of microRNAs in myocardial diseases. Curr Heart Fail Rep 8:193–197

    Article  CAS  PubMed  Google Scholar 

  22. Latronico MV, Condorelli G (2013) MicroRNA-dependent control of the cardiac fibroblast secretome. Circ Res 113:1099–1101

    Article  CAS  PubMed  Google Scholar 

  23. Li C, Fang Z, Jiang T, Zhang Q, Liu C, Zhang C, Xiang Y (2013) Serum microRNAs profile from genome-wide serves as a fingerprint for diagnosis of acute myocardial infarction and angina pectoris. BMC Med Genomics 6:16

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Li YQ, Zhang MF, Wen HY, Hu CL, Liu R, Wei HY, Ai CM, Wang G, Liao XX, Li X (2013) Comparing the diagnostic values of circulating microRNAs and cardiac troponin T in patients with acute myocardial infarction. Clinics (Sao Paulo) 68:75–80

    Article  Google Scholar 

  25. Ling TY, Wang XL, Chai Q, Lau TW, Koestler CM, Park SJ, Daly RC, Greason KL, Jen J, Wu LQ, Shen WF, Shen WK, Cha YM, Lee HC (2013) Regulation of the SK3 channel by microRNA-499–potential role in atrial fibrillation. Heart Rhythm 10:1001–1009

    Article  PubMed Central  PubMed  Google Scholar 

  26. Malizia AP, Wang DZ (2011) MicroRNAs in cardiomyocyte development. Wiley Interdiscip Rev Syst Biol Med 3:183–190

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Matkovich SJ, Hu Y, Eschenbacher WH, Dorn LE, Dorn GW 2nd (2012) Direct and indirect involvement of microRNA-499 in clinical and experimental cardiomyopathy. Circ Res 111:521–531

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. McManus DD, Ambros V (2011) Circulating MicroRNAs in cardiovascular disease. Circulation 124:1908–1910

    Article  PubMed Central  PubMed  Google Scholar 

  29. Mitchell PS, Parkin RK, Kroh EM, Fritz BR, Wyman SK, Pogosova-Agadjanyan EL, Peterson A, Noteboom J, O’Briant KC, Allen A, Lin DW, Urban N, Drescher CW, Knudsen BS, Stirewalt DL, Gentleman R, Vessella RL, Nelson PS, Martin DB, Tewari M (2008) Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci U S A 105:10513–10518

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Montgomery RL, Hullinger TG, Semus HM, Dickinson BA, Seto AG, Lynch JM, Stack C, Latimer PA, Olson EN, van Rooij E (2011) Therapeutic inhibition of miR-208a improves cardiac function and survival during heart failure. Circulation 124:1537–1547

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Nabialek E, Wanha W, Kula D, Jadczyk T, Krajewska M, Kowalowka A, Dworowy S, Hrycek E, Wludarczyk W, Parma Z, Michalewska-Wludarczyk A, Pawlowski T, Ochala B, Jarzab B, Tendera M, Wojakowski W (2013) Circulating microRNAs (miR-423-5p, miR-208a and miR-1) in acute myocardial infarction and stable coronary heart disease. Minerva Cardioangiol 61:627–637

    CAS  PubMed  Google Scholar 

  32. Olesen MS, Jabbari J, Holst AG, Nielsen JB, Steinbruchel DA, Jespersen T, Haunso S, Svendsen JH (2011) Screening of KCNN3 in patients with early-onset lone atrial fibrillation. Europace 13:963–967

    Article  PubMed  Google Scholar 

  33. Olivieri F, Antonicelli R, Lorenzi M, D’Alessandra Y, Lazzarini R, Santini G, Spazzafumo L, Lisa R, La Sala L, Galeazzi R, Recchioni R, Testa R, Pompilio G, Capogrossi MC, Procopio AD (2013) Diagnostic potential of circulating miR-499-5p in elderly patients with acute non ST-elevation myocardial infarction. Int J Cardiol 167:531–536

    Article  PubMed  Google Scholar 

  34. Pan Z, Sun X, Shan H, Wang N, Wang J, Ren J, Feng S, Xie L, Lu C, Yuan Y, Zhang Y, Wang Y, Lu Y, Yang B (2012) MicroRNA-101 inhibited postinfarct cardiac fibrosis and improved left ventricular compliance via the FBJ osteosarcoma oncogene/transforming growth factor-beta1 pathway. Circulation 126:840–850

    Article  CAS  PubMed  Google Scholar 

  35. Satoh M, Minami Y, Takahashi Y, Tabuchi T, Nakamura M (2010) Expression of microRNA-208 is associated with adverse clinical outcomes in human dilated cardiomyopathy. J Card Fail 16:404–410

    Article  CAS  PubMed  Google Scholar 

  36. Sayed D, Hong C, Chen IY, Lypowy J, Abdellatif M (2007) MicroRNAs play an essential role in the development of cardiac hypertrophy. Circ Res 100:416–424

    Article  CAS  PubMed  Google Scholar 

  37. Shan H, Li X, Pan Z, Zhang L, Cai B, Zhang Y, Xu C, Chu W, Qiao G, Li B, Lu Y, Yang B (2009) Tanshinone IIA protects against sudden cardiac death induced by lethal arrhythmias via repression of microRNA-1. Br J Pharmacol 158:1227–1235

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Shieh JT, Huang Y, Gilmore J, Srivastava D (2011) Elevated miR-499 levels blunt the cardiac stress response. PLoS One 6:e19481

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Shyu KG, Wang BW, Wu GJ, Lin CM, Chang H (2013) Mechanical stretch via transforming growth factor-beta1 activates microRNA208a to regulate endoglin expression in cultured rat cardiac myoblasts. Eur J Heart Fail 15:36–45

    Article  CAS  PubMed  Google Scholar 

  40. Small EM, Frost RJ, Olson EN (2010) MicroRNAs add a new dimension to cardiovascular disease. Circulation 121:1022–1032

    Article  PubMed Central  PubMed  Google Scholar 

  41. van Rooij E, Quiat D, Johnson BA, Sutherland LB, Qi X, Richardson JA, Kelm RJ Jr, Olson EN (2009) A family of microRNAs encoded by myosin genes governs myosin expression and muscle performance. Dev Cell 17:662–673

    Article  PubMed Central  PubMed  Google Scholar 

  42. van Rooij E, Sutherland LB, Qi X, Richardson JA, Hill J, Olson EN (2007) Control of stress-dependent cardiac growth and gene expression by a microRNA. Science 316:575–579

    Article  PubMed  Google Scholar 

  43. Wang J, Huang W, Xu R, Nie Y, Cao X, Meng J, Xu X, Hu S, Zheng Z (2012) MicroRNA-24 regulates cardiac fibrosis after myocardial infarction. J Cell Mol Med 16:2150–2160

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Wang BW, Wu GJ, Cheng WP, Shyu KG (2014) MicroRNA-208a increases myocardial fibrosis via endoglin in volume overloading heart. PLoS One 9:e84188

    Article  PubMed Central  PubMed  Google Scholar 

  45. Wang GK, Zhu JQ, Zhang JT, Li Q, Li Y, He J, Qin YW, Jing Q (2010) Circulating microRNA: a novel potential biomarker for early diagnosis of acute myocardial infarction in humans. Eur Heart J 31:659–666

    Article  PubMed  Google Scholar 

  46. Wu AH, Feng YJ (1998) Biochemical differences between cTnT and cTnI and their significance for diagnosis of acute coronary syndromes. Eur Heart J 19(Suppl N):N25–N29

    CAS  PubMed  Google Scholar 

  47. Xiao J, Shen B, Li J, Lv D, Zhao Y, Wang F, Xu J (2014) Serum microRNA-499 and microRNA-208a as biomarkers of acute myocardial infarction. Int J Clin Exp Med 7:136–141

    PubMed Central  PubMed  Google Scholar 

  48. Yang B, Lin H, Xiao J, Lu Y, Luo X, Li B, Zhang Y, Xu C, Bai Y, Wang H, Chen G, Wang Z (2007) The muscle-specific microRNA miR-1 regulates cardiac arrhythmogenic potential by targeting GJA1 and KCNJ2. Nat Med 13:486–491

    Article  CAS  PubMed  Google Scholar 

  49. Zhang X, Zeng Y (2010) Regulation of mammalian microRNA expression. J Cardiovasc Transl Res 3:197–203

    Article  PubMed  Google Scholar 

  50. Zile MR, Mehurg SM, Arroyo JE, Stroud RE, DeSantis SM, Spinale FG (2011) Relationship between the temporal profile of plasma microRNA and left ventricular remodeling in patients after myocardial infarction. Circ Cardiovasc Genet 4:614–619

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Conflict of interest

The authors have no conflict of interests

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, Y., Li, J. MicroRNA208 family in cardiovascular diseases: therapeutic implication and potential biomarker. J Physiol Biochem 71, 479–486 (2015). https://doi.org/10.1007/s13105-015-0409-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13105-015-0409-9

Keywords

Navigation