Skip to main content

Advertisement

Log in

Hydrogen Sulfide Attenuates Tissue Plasminogen Activator-Induced Cerebral Hemorrhage Following Experimental Stroke

  • Original Article
  • Published:
Translational Stroke Research Aims and scope Submit manuscript

Abstract

Tissue plasminogen activator (tPA), the only approved drug for the treatment of ischemic stroke, increases the risk of cerebral hemorrhage. Here, we investigated whether the newly identified gaso-transmitter hydrogen sulfide (H2S), when used in combination with tPA, reduced the hemorrhagic transformation following stroke. In a mouse model of middle cerebral artery occlusion (MCAO), intravenous injection of tPA enhanced cerebral hemorrhage, which was significantly attenuated by the co-administration of two structurally unrelated H2S donors, ADT-OH and NaHS. By assessing extravasation of Evans blue into the ischemic hemisphere as well as brain edema following MCAO, we further showed that a tPA-exacerbated BBB disruption was significantly ameliorated by the co-administration of ADT-OH. In the mouse MCAO model, tPA upregulated Akt activation, vascular endothelial growth factor (VEGF) expression, and metalloproteinase 9 (MMP9) activity in the ischemic brain, which was remarkably attenuated by ADT-OH. In the in vitro glucose–oxygen deprivation (OGD) model, ADT-OH markedly attenuated tPA-enhanced Akt activation and VEGF expression in brain microvascular endothelial cells. Finally, ADT-OH improved functional outcomes in mice subjected to MCAO and tPA infusion. In conclusion, H2S donors reduced tPA-induced cerebral hemorrhage by possibly inhibiting the Akt-VEGF-MMP9 cascade. Administration of H2S donors has potential as a novel modality to improve the safety of tPA following stroke.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Hacke W, Kaste M, Bluhmki E, Brozman M, Davalos A, Guidetti D, et al. Thrombolysis with alteplase 3 to 4.5 hours after acute ischemic stroke. N Engl J Med. 2008;359(13):1317–29. doi:10.1056/NEJMoa0804656.

    Article  PubMed  CAS  Google Scholar 

  2. Hafez S, Hoda MN, Guo X, Johnson MH, Fagan SC, Ergul A. Comparative analysis of different methods of ischemia/reperfusion in hyperglycemic stroke outcomes: interaction with tPA. Transl Stroke Res. 2015;6(3):171–80. doi:10.1007/s12975-015-0391-0.

    Article  PubMed  CAS  Google Scholar 

  3. Wardlaw JM, Sandercock PA, Berge E. Thrombolytic therapy with recombinant tissue plasminogen activator for acute ischemic stroke: where do we go from here? A cumulative meta-analysis. Stroke J Cereb Circ. 2003;34(6):1437–42. doi:10.1161/01.STR.0000072513.72262.7E.

    Article  CAS  Google Scholar 

  4. Lo EH, Dalkara T, Moskowitz MA. Mechanisms, challenges and opportunities in stroke. Nat Rev Neurosci. 2003;4(5):399–415. doi:10.1038/nrn1106.

    Article  PubMed  CAS  Google Scholar 

  5. Dijkhuizen RM, Asahi M, Wu O, Rosen BR, Lo EH. Rapid breakdown of microvascular barriers and subsequent hemorrhagic transformation after delayed recombinant tissue plasminogen activator treatment in a rat embolic stroke model. Stroke J Cereb Circ. 2002;33(8):2100–4.

    Article  CAS  Google Scholar 

  6. Kastrup A, Groschel K, Ringer TM, Redecker C, Cordesmeyer R, Witte OW, et al. Early disruption of the blood–brain barrier after thrombolytic therapy predicts hemorrhage in patients with acute stroke. Stroke J Cereb Circ. 2008;39(8):2385–7. doi:10.1161/STROKEAHA.107.505420.

    Article  CAS  Google Scholar 

  7. Wang L, Fan W, Cai P, Fan M, Zhu X, Dai Y, et al. Recombinant ADAMTS13 reduces tissue plasminogen activator-induced hemorrhage after stroke in mice. Ann Neurol. 2013;73(2):189–98. doi:10.1002/ana.23762.

    Article  PubMed  CAS  Google Scholar 

  8. Won S, Lee JH, Wali B, Stein DG, Sayeed I. Progesterone attenuates hemorrhagic transformation after delayed tPA treatment in an experimental model of stroke in rats: involvement of the VEGF-MMP pathway. J Cereb Blood Flow Metab Off J Int Soc Cereb Blood Flow Metab. 2014;34(1):72–80. doi:10.1038/jcbfm.2013.163.

    Article  CAS  Google Scholar 

  9. Oesterhelweg L, Puschel K. “Death may come on like a stroke of lightening”: phenomenological and morphological aspects of fatalities caused by manure gas. Int J Legal Med. 2008;122(2):101–7. doi:10.1007/s00414-007-0172-8.

    Article  PubMed  CAS  Google Scholar 

  10. Wallace JL, Wang R. Hydrogen sulfide-based therapeutics: exploiting a unique but ubiquitous gasotransmitter. Nat Rev Drug Discov. 2015;14(5):329–45. doi:10.1038/nrd4433.

    Article  PubMed  CAS  Google Scholar 

  11. Elrod JW, Calvert JW, Morrison J, Doeller JE, Kraus DW, Tao L, et al. Hydrogen sulfide attenuates myocardial ischemia-reperfusion injury by preservation of mitochondrial function. Proc Natl Acad Sci U S A. 2007;104(39):15560–5. doi:10.1073/pnas.0705891104.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Zhu YZ, Wang ZJ, Ho P, Loke YY, Zhu YC, Huang SH, et al. Hydrogen sulfide and its possible roles in myocardial ischemia in experimental rats. J Appl Physiol. 2007;102(1):261–8. doi:10.1152/japplphysiol.00096.2006.

    Article  PubMed  CAS  Google Scholar 

  13. Nicholson CK, Lambert JP, Molkentin JD, Sadoshima J, Calvert JW. Thioredoxin 1 is essential for sodium sulfide-mediated cardioprotection in the setting of heart failure. Arterioscler Thromb Vasc Biol. 2013;33(4):744–51. doi:10.1161/ATVBAHA.112.300484.

    Article  PubMed  CAS  Google Scholar 

  14. Bos EM, Wang R, Snijder PM, Boersema M, Damman J, Fu M, et al. Cystathionine gamma-Lyase protects against renal ischemia/reperfusion by modulating oxidative stress. J Am Soc Nephrol. 2013;24(5):759–70. doi:10.1681/ASN.2012030268.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Hunter JP, Hosgood SA, Patel M, Rose R, Read K, Nicholson ML. Effects of hydrogen sulphide in an experimental model of renal ischaemia-reperfusion injury. Br J Surg. 2012;99(12):1665–71. doi:10.1002/bjs.8956.

    Article  PubMed  CAS  Google Scholar 

  16. Suzuki K, Olah G, Modis K, Coletta C, Kulp G, Gero D, et al. Hydrogen sulfide replacement therapy protects the vascular endothelium in hyperglycemia by preserving mitochondrial function. Proc Natl Acad Sci U S A. 2011;108(33):13829–34. doi:10.1073/pnas.1105121108.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Wen YD, Wang H, Kho SH, Rinkiko S, Sheng X, Shen HM, et al. Hydrogen sulfide protects HUVECs against hydrogen peroxide induced mitochondrial dysfunction and oxidative stress. PLoS One. 2013;8(2), e53147. doi:10.1371/journal.pone.0053147.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Cui Y, Duan X, Li H, Dang B, Yin J, Wang Y, et al. Hydrogen sulfide ameliorates early brain injury following subarachnoid hemorrhage in rats. Mol Neurobiol. 2015. doi:10.1007/s12035-015-9304-1.

    PubMed Central  Google Scholar 

  19. Wang Y, Jia J, Ao G, Hu L, Liu H, Xiao Y, et al. Hydrogen sulfide protects blood–brain barrier integrity following cerebral ischemia. J Neurochem. 2014;129(5):827–38. doi:10.1111/jnc.12695.

    Article  PubMed  CAS  Google Scholar 

  20. Zhu W, Casper A, Libal NL, Murphy SJ, Bodhankar S, Offner H, et al. Preclinical evaluation of recombinant T cell receptor ligand RTL1000 as a therapeutic agent in ischemic stroke. Transl Stroke Res. 2015;6(1):60–8. doi:10.1007/s12975-014-0373-7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Suenaga J, Hu X, Pu H, Shi Y, Hassan SH, Xu M, et al. White matter injury and microglia/macrophage polarization are strongly linked with age-related long-term deficits in neurological function after stroke. Exp Neurol. 2015;272:109–19. doi:10.1016/j.expneurol.2015.03.021.

    Article  PubMed  CAS  Google Scholar 

  22. Dong W, Qi Z, Liang J, Shi W, Zhao Y, Luo Y, et al. Reduction of zinc accumulation in mitochondria contributes to decreased cerebral ischemic injury by normobaric hyperoxia treatment in an experimental stroke model. Exp Neurol. 2015;272:181–9. doi:10.1016/j.expneurol.2015.04.005.

    Article  PubMed  CAS  Google Scholar 

  23. Su EJ, Fredriksson L, Geyer M, Folestad E, Cale J, Andrae J, et al. Activation of PDGF-CC by tissue plasminogen activator impairs blood–brain barrier integrity during ischemic stroke. Nat Med. 2008;14(7):731–7. doi:10.1038/nm1787.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Won SJ, Tang XN, Suh SW, Yenari MA, Swanson RA. Hyperglycemia promotes tissue plasminogen activator-induced hemorrhage by increasing superoxide production. Ann Neurol. 2011;70(4):583–90. doi:10.1002/ana.22538.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Poppe AY, Majumdar SR, Jeerakathil T, Ghali W, Buchan AM, Hill MD, et al. Admission hyperglycemia predicts a worse outcome in stroke patients treated with intravenous thrombolysis. Diabetes Care. 2009;32(4):617–22. doi:10.2337/dc08-1754.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Jin Q, Cheng J, Liu Y, Wu J, Wang X, Wei S, et al. Improvement of functional recovery by chronic metformin treatment is associated with enhanced alternative activation of microglia/macrophages and increased angiogenesis and neurogenesis following experimental stroke. Brain Behav Immun. 2014;40:131–42. doi:10.1016/j.bbi.2014.03.003.

    Article  PubMed  CAS  Google Scholar 

  27. Mao L, Jia J, Zhou X, Xiao Y, Wang Y, Mao X, et al. Delayed administration of a PTEN inhibitor BPV improves functional recovery after experimental stroke. Neuroscience. 2013;231:272–81. doi:10.1016/j.neuroscience.2012.11.050.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Zhu W, Libal NL, Casper A, Bodhankar S, Offner H, Alkayed NJ. Recombinant T cell receptor ligand treatment improves neurological outcome in the presence of tissue plasminogen activator in experimental ischemic stroke. Transl Stroke Res. 2014;5(5):612–7. doi:10.1007/s12975-014-0348-8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Kilic E, Kilic U, Wang Y, Bassetti CL, Marti HH, Hermann DM. The phosphatidylinositol-3 kinase/Akt pathway mediates VEGF’s neuroprotective activity and induces blood brain barrier permeability after focal cerebral ischemia. FASEB J Off Publ Fed Am Soc Exp Biol. 2006;20(8):1185–7. doi:10.1096/fj.05-4829fje.

    CAS  Google Scholar 

  30. Geng Y, Li E, Mu Q, Zhang Y, Wei X, Li H, et al. Hydrogen sulfide inhalation decreases early blood–brain barrier permeability and brain edema induced by cardiac arrest and resuscitation. J Cereb Blood Flow Metab Off J Int Soc Cereb Blood Flow Metab. 2015;35(3):494–500. doi:10.1038/jcbfm.2014.223.

    Article  CAS  Google Scholar 

  31. Kamat PK, Kyles P, Kalani A, Tyagi N. Hydrogen sulfide ameliorates homocysteine-induced Alzheimer’s disease-like pathology, blood–brain barrier disruption, and synaptic disorder. Mol Neurobiol. 2015. doi:10.1007/s12035-015-9212-4.

    Google Scholar 

  32. Gu X, Zhu YZ. Therapeutic applications of organosulfur compounds as novel hydrogen sulfide donors and/or mediators. Expert Rev Clin Pharmacol. 2011;4(1):123–33. doi:10.1586/ecp.10.129.

    Article  PubMed  CAS  Google Scholar 

  33. Whiteman M, Winyard PG. Hydrogen sulfide and inflammation: the good, the bad, the ugly and the promising. Expert Rev Clin Pharmacol. 2011;4(1):13–32. doi:10.1586/ecp.10.134.

    Article  PubMed  CAS  Google Scholar 

  34. Li L, Whiteman M, Guan YY, Neo KL, Cheng Y, Lee SW, et al. Characterization of a novel, water-soluble hydrogen sulfide-releasing molecule (GYY4137): new insights into the biology of hydrogen sulfide. Circulation. 2008;117(18):2351–60. doi:10.1161/CIRCULATIONAHA.107.753467.

    Article  PubMed  CAS  Google Scholar 

  35. Marutani E, Kosugi S, Tokuda K, Khatri A, Nguyen R, Atochin DN, et al. A novel hydrogen sulfide-releasing N-methyl-D-aspartate receptor antagonist prevents ischemic neuronal death. J Biol Chem. 2012;287(38):32124–35. doi:10.1074/jbc.M112.374124.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Lee M, Tazzari V, Giustarini D, Rossi R, Sparatore A, Del Soldato P, et al. Effects of hydrogen sulfide-releasing L-DOPA derivatives on glial activation: potential for treating Parkinson disease. J Biol Chem. 2010;285(23):17318–28. doi:10.1074/jbc.M110.115261.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Ukai Y, Taniguchi N, Takeshita K, Kimura K, Enomoto H. Chronic anethole trithione treatment enhances the salivary secretion and increases the muscarinic acetylcholine receptors in the rat submaxillary gland. Arch Int Pharmacodyn Ther. 1984;271(2):206–12.

    PubMed  CAS  Google Scholar 

  38. Xie H, Xu Q, Jia J, Ao G, Sun Y, Hu L, et al. Hydrogen sulfide protects against myocardial ischemia and reperfusion injury by activating AMP-activated protein kinase to restore autophagic flux. Biochem Biophys Res Commun. 2015;458(3):632–8. doi:10.1016/j.bbrc.2015.02.017.

    Article  PubMed  CAS  Google Scholar 

  39. An J, Zhang C, Polavarapu R, Zhang X, Zhang X, Yepes M. Tissue-type plasminogen activator and the low-density lipoprotein receptor-related protein induce Akt phosphorylation in the ischemic brain. Blood. 2008;112(7):2787–94. doi:10.1182/blood-2008-02-141630.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Zhang ZG, Zhang L, Tsang W, Soltanian-Zadeh H, Morris D, Zhang R, et al. Correlation of VEGF and angiopoietin expression with disruption of blood–brain barrier and angiogenesis after focal cerebral ischemia. J Cereb Blood Flow Metab Off J Int Soc Cereb Blood Flow Metab. 2002;22(4):379–92. doi:10.1097/00004647-200204000-00002.

    Article  CAS  Google Scholar 

  41. UK Prospective Diabetes Study (UKPDS) Group. Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34). Lancet. 1998;352(9131):854–65.

    Article  Google Scholar 

  42. Qu K, Chen CP, Halliwell B, Moore PK, Wong PT. Hydrogen sulfide is a mediator of cerebral ischemic damage. Stroke J Cereb Circ. 2006;37(3):889–93. doi:10.1161/01.STR.0000204184.34946.41.

    Article  CAS  Google Scholar 

  43. Hu LF, Lu M, Hon Wong PT, Bian JS. Hydrogen sulfide: neurophysiology and neuropathology. Antioxid Redox Signal. 2011;15(2):405–19. doi:10.1089/ars.2010.3517.

    Article  PubMed  CAS  Google Scholar 

  44. Tao BB, Liu SY, Zhang CC, Fu W, Cai WJ, Wang Y, et al. VEGFR2 functions as an H2S-targeting receptor protein kinase with its novel Cys1045-Cys1024 disulfide bond serving as a specific molecular switch for hydrogen sulfide actions in vascular endothelial cells. Antioxid Redox Signal. 2013;19(5):448–64. doi:10.1089/ars.2012.4565.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Argaw AT, Asp L, Zhang J, Navrazhina K, Pham T, Mariani JN, et al. Astrocyte-derived VEGF-A drives blood–brain barrier disruption in CNS inflammatory disease. J Clin Invest. 2012;122(7):2454–68. doi:10.1172/JCI60842.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Zhang ZG, Zhang L, Jiang Q, Zhang R, Davies K, Powers C, et al. VEGF enhances angiogenesis and promotes blood–brain barrier leakage in the ischemic brain. J Clin Invest. 2000;106(7):829–38. doi:10.1172/JCI9369.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgments

This work received the financial support of grants from the National Science Foundation of China (81571124, 81471336, and 81371278) and from the State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University (KF-GN-201203). Additionally, we appreciate the support from the Priority Academic Program Development of the Jiangsu Higher Education Institutes (PAPD) and the Jiangsu key laboratory grant (BM2013003).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jian Cheng or Jia Jia.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interest.

Human and Animal Rights and Informed Consent

All institutional and national guidelines for the care and use of laboratory animals were followed.

Disclosures

J.J and J.C are the inventors of a patent on the therapeutic effects of ADT-derived hydrogen sulfide donors in stroke patients, which was approved by the China Intellectual Property Office.

Additional information

Hui Liu and Yi Wang contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, H., Wang, Y., Xiao, Y. et al. Hydrogen Sulfide Attenuates Tissue Plasminogen Activator-Induced Cerebral Hemorrhage Following Experimental Stroke. Transl. Stroke Res. 7, 209–219 (2016). https://doi.org/10.1007/s12975-016-0459-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12975-016-0459-5

Keywords

Navigation