Skip to main content

Advertisement

Log in

Augmentation of Normal and Glutamate-Impaired Neuronal Respiratory Capacity by Exogenous Alternative Biofuels

  • Original Article
  • Published:
Translational Stroke Research Aims and scope Submit manuscript

Abstract

Mitochondrial respiratory capacity is critical for responding to changes in neuronal energy demand. One approach toward neuroprotection is the administration of alternative energy substrates (“biofuels”) to overcome brain injury-induced inhibition of glucose-based aerobic energy metabolism. This study tested the hypothesis that exogenous pyruvate, lactate, β-hydroxybutyrate, and acetyl-l-carnitine each increase neuronal respiratory capacity in vitro either in the absence of or following transient excitotoxic glutamate receptor stimulation. Compared to the presence of 5 mM glucose alone, the addition of pyruvate, lactate, or β-hydroxybutyrate (1.0–10.0 mM) to either day in vitro (DIV) 14 or 7 rat cortical neurons resulted in significant, dose-dependent stimulation of respiratory capacity, measured by cell respirometry as the maximal O2 consumption rate in the presence of the respiratory uncoupler carbonyl cyanide-p-trifluoromethoxyphenylhydrazone. A 30-min exposure to 100 μM glutamate impaired respiratory capacity for DIV 14, but not DIV 7, neurons. Glutamate reduced the respiratory capacity for DIV 14 neurons with glucose alone by 25 % and also reduced respiratory capacity with glucose plus pyruvate, lactate, or β-hydroxybutyrate. However, respiratory capacity in glutamate-exposed neurons following pyruvate or β-hydroxybutyrate addition was still, at least, as high as that obtained with glucose alone in the absence of glutamate exposure. These results support the interpretation that previously observed neuroprotection by exogenous pyruvate, lactate, or β-hydroxybutyrate is at least partially mediated by their preservation of neuronal respiratory capacity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

aCSF:

Artificial cerebrospinal fluid

AMPA:

2-Amino-3-(3-hydroxy-5-methyl-isoxazol-4-yl)propanoic acid

ALCAR:

Acetyl-l-carnitine

ATP:

Adenosine triphosphate

BHB:

β-Hydroxybutyrate

CNQX:

6-Cyano-7-nitroquinoxaline-2,3-dione

DIV:

Day in vitro

FCCP:

Carbonyl cyanide-p-trifluoromethoxyphenylhydrazone

MK801:

(+)-5-Methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine maleate

NMDA:

N-methyl d-aspartate

OCR:

Oxygen consumption rate

References

  1. Robertson CL, Scafidi S, McKenna MC, Fiskum G. Mitochondrial mechanisms of cell death and neuroprotection in pediatric ischemic and traumatic brain injury. Exp Neurol. 2009;218(2):371–80.

    Article  PubMed  CAS  Google Scholar 

  2. Schuh RA, Clerc P, Hwang H, Mehrabian Z, Bittman K, Chen H, et al. Adaptation of microplate-based respirometry for hippocampal slices and analysis of respiratory capacity. J Neurosci Res. 2011;89(12):1979–88.

    Article  PubMed  CAS  Google Scholar 

  3. Brand MD, Nicholls DG. Assessing mitochondrial dysfunction in cells. Biochem J. 2011;435(2):297–312.

    Article  PubMed  CAS  Google Scholar 

  4. Jekabsons MB, Nicholls DG. In situ respiration and bioenergetic status of mitochondria in primary cerebellar granule neuronal cultures exposed continuously to glutamate. J Biol Chem. 2004;279(31):32989–3000.

    Article  PubMed  CAS  Google Scholar 

  5. Schurr A, Gozal E. Aerobic production and utilization of lactate satisfy increased energy demands upon neuronal activation in hippocampal slices and provide neuroprotection against oxidative stress. Front Pharmacol. 2011;2(96):1–15.

    Google Scholar 

  6. Pellerin L, Bouzier-Sore AK, Aubert A, Serres S, Merle M, Costalat R, et al. Activity-dependent regulation of energy metabolism by astrocytes: an update. Glia. 2007;55(12):1251–62.

    Article  PubMed  Google Scholar 

  7. Nalecz KA, Miecz D, Berezowski V, Cecchelli R. Carnitine: transport and physiological functions in the brain. Mol Aspects Med. 2004;25(5–6):551–67.

    PubMed  CAS  Google Scholar 

  8. Scafidi S, Fiskum G, Lindauer SL, Bamford P, Shi D, Hopkins I, et al. Metabolism of acetyl-l-carnitine for energy and neurotransmitter synthesis in the immature rat brain. J Neurochem. 2010;114(3):820–31.

    Article  PubMed  CAS  Google Scholar 

  9. Rosenthal RE, Williams R, Bogaert YE, Getson PR, Fiskum G. Prevention of postischemic canine neurological injury through potentiation of brain energy metabolism by acetyl-l-carnitine. Stroke. 1992;23(9):1312–7.

    Article  PubMed  CAS  Google Scholar 

  10. Bogaert YE, Rosenthal RE, Fiskum G. Postischemic inhibition of cerebral cortex pyruvate dehydrogenase. Free Radic Biol Med. 1994;16(6):811–20.

    Article  PubMed  CAS  Google Scholar 

  11. Wada H, Okada Y, Nabetani M, Nakamura H. The effects of lactate and beta-hydroxybutyrate on the energy metabolism and neural activity of hippocampal slices from adult and immature rat. Brain Res Dev Brain Res. 1997;101(1–2):1–7.

    Article  PubMed  CAS  Google Scholar 

  12. Nehlig A. Brain uptake and metabolism of ketone bodies in animal models. Prostaglandins Leukot Essent Fat Acids. 2004;70(3):265–75.

    Article  CAS  Google Scholar 

  13. Deng-Bryant Y, Prins ML, Hovda DA, Harris NG. Ketogenic diet prevents alterations in brain metabolism in young but not adult rats after traumatic brain injury. J Neurotrauma. 2011;28(9):1813–25.

    Article  PubMed  Google Scholar 

  14. Dardzinski BJ, Smith SL, Towfighi J, Williams GD, Vannucci RC, Smith MB. Increased plasma beta-hydroxybutyrate, preserved cerebral energy metabolism, and amelioration of brain damage during neonatal hypoxia ischemia with dexamethasone pretreatment. Pediatr Res. 2000;48(2):248–55.

    Article  PubMed  CAS  Google Scholar 

  15. Vannucci RC, Vannucci SJ. Glucose metabolism in the developing brain. Semin Perinatol. 2000;24(2):107–15.

    Article  PubMed  CAS  Google Scholar 

  16. Yakovlev AG, Ota K, Wang G, Movsesyan V, Bao WL, Yoshihara K, et al. Differential expression of apoptotic protease-activating factor-1 and caspase-3 genes and susceptibility to apoptosis during brain development and after traumatic brain injury. J Neurosci. 2001;21(19):7439–46.

    PubMed  CAS  Google Scholar 

  17. Stoica BA, Movsesyan VA, Knoblach SM, Faden AI. Ceramide induces neuronal apoptosis through mitogen-activated protein kinases and causes release of multiple mitochondrial proteins. Mol Cell Neurosci. 2005;29(3):355–71.

    Article  PubMed  CAS  Google Scholar 

  18. Chandler LJ, Norwood D, Sutton G. Chronic ethanol upregulates NMDA and AMPA, but not kainate receptor subunit proteins in rat primary cortical cultures. Alcohol Clin Exp Res. 1999;23(2):363–70.

    Article  PubMed  CAS  Google Scholar 

  19. Zanelli SA, Solenski NJ, Rosenthal RE, Fiskum G. Mechanisms of ischemic neuroprotection by acetyl-l-carnitine. Ann N Y Acad Sci. 2005;1053:153–61.

    Article  PubMed  CAS  Google Scholar 

  20. Jones LL, McDonald DA, Borum PR. Acylcarnitines: role in brain. Prog Lipid Res. 2010;49(1):61–75.

    Article  PubMed  CAS  Google Scholar 

  21. Gramsbergen JB, Sandberg M, Kornblit B, Zimmer J. Pyruvate protects against 3-nitropropionic acid neurotoxicity in corticostriatal slice cultures. Neuroreport. 2000;11(12):2743–7.

    Article  PubMed  CAS  Google Scholar 

  22. Samoilova M, Weisspapir M, Abdelmalik P, Velumian AA, Carlen PL. Chronic in vitro ketosis is neuroprotective but not anti-convulsant. J Neurochem. 2010;113(4):826–35.

    Article  PubMed  CAS  Google Scholar 

  23. Maalouf M, Sullivan P, Davis L, Kim DY, Rho JM. Ketones inhibit mitochondrial production of reactive oxygen species production following glutamate excitotoxicity by increasing NADH oxidation. Neuroscience. 2007;145:256–64.

    Article  PubMed  CAS  Google Scholar 

  24. Lolic MM, Fiskum G, Rosenthal RE. Neuroprotective effects of acetyl-l-carnitine after stroke in rats. Ann Emerg Med. 1997;29(6):758–65.

    Article  PubMed  CAS  Google Scholar 

  25. Rosenthal RE, Bogaert YE, Fiskum G. Delayed therapy of experimental global cerebral ischemia with acetyl-l-carnitine in dogs. Neurosci Lett. 2005;378(2):82–7.

    Article  PubMed  CAS  Google Scholar 

  26. Jalal FY, Bohlke M, Maher TJ. Acetyl-l-carnitine reduces the infarct size and striatal glutamate outflow following focal cerebral ischemia in rats. Ann N Y Acad Sci. 2010;1199:95–104.

    Article  PubMed  CAS  Google Scholar 

  27. Zhang R, Zhang H, Zhang Z, Wang T, Niu J, Cui D, et al. Neuroprotective effects of pre-treatment with l-carnitine and acetyl-l-carnitine on ischemic injury in vivo and in vitro. Int J Mol Sci. 2012;13(2):2078–90.

    Article  PubMed  CAS  Google Scholar 

  28. Scafidi S, Racz J, Hazelton J, McKenna MC, Fiskum G. Neuroprotection by acetyl-l-carnitine after traumatic injury to the immature rat brain. Dev Neurosci. 2011;32(5–6):480–7.

    Google Scholar 

  29. Patel SP, Sullivan PG, Lyttle TS, Magnuson DS, Rabchevsky AG. Acetyl-l-carnitine treatment following spinal cord injury improves mitochondrial function correlated with remarkable tissue sparing and functional recovery. Neuroscience. 2012;210:296–307.

    Article  PubMed  CAS  Google Scholar 

  30. Patel SP, Sullivan PG, Lyttle TS, Rabchevsky AG. Acetyl-l-carnitine ameliorates mitochondrial dysfunction following contusion spinal cord injury. J Neurochem. 2010;114(1):291–301.

    PubMed  CAS  Google Scholar 

  31. Cordeau-Lossouarn L, Vayssiere JL, Larcher JC, Gros F, Croizat B. Mitochondrial maturation during neuronal differentiation in vivo and in vitro. Biol Cell. 1991;71(1–2):57–65.

    Article  PubMed  CAS  Google Scholar 

  32. Peterson C, Neal JH, Cotman CW. Development of N-methyl-d-aspartate excitotoxicity in cultured hippocampal neurons. Brain Res Dev Brain Res. 1989;48(2):187–95.

    Article  PubMed  CAS  Google Scholar 

  33. Jiang Q, Wang J, Wu X, Jiang Y. Alterations of NR2B and PSD-95 expression after early-life epileptiform discharges in developing neurons. Int J Dev Neurosci. 2007;25(3):165–70.

    Article  PubMed  CAS  Google Scholar 

  34. Erecinska M, Silver IA. Tissue oxygen tension and brain sensitivity to hypoxia. Respir Physiol. 2001;128(3):263–76.

    Article  PubMed  CAS  Google Scholar 

  35. Kubis HP, Hanke N, Scheibe RJ, Gros G. Accumulation and nuclear import of HIF1 alpha during high and low oxygen concentration in skeletal muscle cells in primary culture. Biochim Biophys Acta. 2005;1745(2):187–95.

    Article  PubMed  CAS  Google Scholar 

  36. Chen C, Pore N, Behrooz A, Ismail-Beigi F, Maity A. Regulation of glut1 mRNA by hypoxia-inducible factor-1. Interaction between H-ras and hypoxia. J Biol Chem. 2001;276(12):9519–25.

    Article  PubMed  CAS  Google Scholar 

  37. Malthankar-Phatak GH, Patel AB, Xia Y, Hong S, Chowdhury GM, Behar KL, et al. Effects of continuous hypoxia on energy metabolism in cultured cerebro-cortical neurons. Brain Res. 2008;1229:147–54. Epub@2008 Jun 28.

    Article  PubMed  CAS  Google Scholar 

  38. Zhang F, Vannucci SJ, Philp NJ, Simpson IA. Monocarboxylate transporter expression in the spontaneous hypertensive rat: effect of stroke. J Neurosci Res. 2005;79(1–2):139–45.

    Article  PubMed  CAS  Google Scholar 

  39. Pierre K, Parent A, Jayet PY, Halestrap AP, Scherrer U, Pellerin L. Enhanced expression of three monocarboxylate transporter isoforms in the brain of obese mice. J Physiol. 2007;583(Pt 2):469–86.

    Article  PubMed  CAS  Google Scholar 

  40. Januszewicz E, Bekisz M, Mozrzymas JW, Nalecz KA. High affinity carnitine transporters from OCTN family in neural cells. Neurochem Res. 2010;35(5):743–8.

    Article  PubMed  CAS  Google Scholar 

  41. Ringseis R, Wege N, Wen G, Rauer C, Hirche F, Kluge H, et al. Carnitine synthesis and uptake into cells are stimulated by fasting in pigs as a model of nonproliferating species. J Nutr Biochem. 2009;20(11):840–7.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by NIH grants T32-NS-07375 to M.D.L., P01-HD16596 to G.F., and R01-NS064978 to B.M.P. The authors thank Ms. Sausan Jaber for performing the cell immunohistochemistry measurements.

Conflict of Interest

Melissa Laird declares that she has no conflict of interest. Pascaline Clerc declares that she has not conflict of interests. Brian Polster declares that he has no conflict of interest. Gary Fiskum declares that he has no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gary Fiskum.

Additional information

All institutional and national guidelines for the care and use of laboratory animals were followed.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Laird, M.D., Clerc, P., Polster, B.M. et al. Augmentation of Normal and Glutamate-Impaired Neuronal Respiratory Capacity by Exogenous Alternative Biofuels. Transl. Stroke Res. 4, 643–651 (2013). https://doi.org/10.1007/s12975-013-0275-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12975-013-0275-0

Keywords

Navigation