Skip to main content
Log in

Micropropagation of Kaempferia angustifolia Roscoe - An Aromatic, Essential Oil Yielding, Underutilized Medicinal Plant of Zingiberaceae Family

  • Research Article
  • Published:
Journal of Crop Science and Biotechnology Aims and scope Submit manuscript

Abstract

Kaempferia angustifolia is an aromatic, essential oil-yielding plant of the Zingiberaceae family with an ethno-medicinal repute. We standardized an effective system for micropropagation of K. angustifolia, and this is probably the very first report of in vitro culture of this species. Axillary buds were cultured on a Murashige and Skoog (MS) medium supplemented with various concentrations and combinations of plant growth regulators (PGRs) and spermidine. Highest multiplication occurred when the MS medium was supplemented with a combination of 2.0 mg L−1 6-benzylaminopurine (BAP), 2.0 mg L−1 kinetin (KIN) and 1.0 mg L−1 α-naphthalene acetic acid (NAA). Addition of spermidine (2.0 mM) along with optimum PGRs had further improved the multiplication rate with a maximum of 6.6 ± 0.36 shoots per explant within 60 days of implantation. The number of multiplied shoots per explant increased with each subsequent regeneration cycle; and the shoots per explant increased from 6.6 ± 0.36 on the 1st regeneration cycle to 10.3 ± 0.42 on the 2nd regeneration cycle and further increased to 13.7 ± 0.37 on the 3rd regeneration cycle on the same medium composition. The best result for in vitro root induction of multiplied shoot was achieved on a half-strength MS medium fortified with 2.0 mg L−1 IBA, with a maximum of 18.5 ± 0.28 roots per shoot. Regenerated plantlets were acclimatized with 88.9 % survival rate. After 9 months of field-transfer, all these plants were harvested and rhizomes were collected. However, the present protocol can definitely be applied for large-scale propagation and commercial cultivation of K. angustifolia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anwar R, Mattoo AK, Handa AK. 2015. Polyamine interactions with plant hormones: crosstalk at several levels, In: T Kusano, H Suzuki, eds., Polyamines: universal molecular nexus for growth, survival, and specialized metabolism. Springer, Japan, pp 267–302

    Google Scholar 

  • Bhattacharya M, Sen A. 2013. In vitro regeneration of pathogen free Kaempferia galanga L. —a rare medicinal plant. Res. Plant Biol. 3: 24–30

    Google Scholar 

  • bin Jantan I, Yassin MSM, Chin CB, Chen LL, Sim NL. 2003. Antifungal activity of the essential oils of nine Zingiberaceae species. Pharm. Biol. 41: 392–397

    Article  Google Scholar 

  • Chirangini P, Sinha SK, Sharma GJ. 2005. In vitro propagation and microrhizome induction in Kaempferia galanga Linn. and K. rotunda Linn. Ind. J. Biotech. 4: 404–408

    Google Scholar 

  • Chithra M, Martin KP, Sunandakumari C, Madhusoodanan PV. 2005. Protocol for rapid propagation and to overcome delayed rhizome formation in field established in vitro derived plantlets of Kaempferia galanga L. Sci. Hortic. 104: 113–120

    Article  CAS  Google Scholar 

  • Das A, Kesari V, Rangan L. 2013. Micropropagation and cytogenetic assessment of Zingiber species of Northeast India. 3 Biotech. 3(6): 471–479

    Article  PubMed  Google Scholar 

  • Das Bhowmik SS, Basu A, Sahoo L. 2016. Direct shoot organogenesis from rhizomes of medicinal Zingiber Alpinia calcarata Rosc. and evaluation of genetic stability by RAPD and ISSR markers. J. Crop Sci. Biotech. 19: 157

    Article  Google Scholar 

  • Geetha SP, Manjula C, John CZ, Minoo D, Nirmal Babu K, Ravindran PN. 1997. Micropropagation of Kaempferia spp. (K. galanga L. and K. rotunda L.). J. Spices Aromat. Crops 6(2): 129–135

    Google Scholar 

  • Haque SM, Ghosh B. 2013a. High frequency microcloning of Aloe vera and their true-to-type conformity by molecular cytogenetic assessment of two-year-old field growing regenerated plants. Bot. Stud. 54: 46

    Article  PubMed  PubMed Central  Google Scholar 

  • Haque SM, Ghosh B. 2013b. Micropropagation, in vitro flowering and cytological studies of Bacopa chamaedryoides, an ethnomedicinal plant. Environ. Exp. Biol. 127: 71–83

    Google Scholar 

  • Haque SM, Ghosh B. 2013c. Field evaluation and genetic stability assessment of regenerated plants produced via direct shoot organogenesis from leaf explant of an endangered “asthma plant” (Tylophora indica) along with their in vitro conservation. Natl. Acad. Sci. Lett. 36: 551–562

    Article  CAS  Google Scholar 

  • Haque SM, Ghosh B. 2014. Somatic embryogenesis and synthetic seed production—a biotechnological approach for true-to-type propagation and in vitro conservation of an ornamental bulbaceous plant Drimiopsis kirkii Baker. Appl. Biochem. Biotechnol. 172: 4013–4024

    Article  PubMed  CAS  Google Scholar 

  • Haque SM, Ghosh B. 2016. High-frequency somatic embryogenesis and artificial seeds for mass production of true-to-type plants in Ledebouria revoluta: an important cardioprotective plant. Plant Cell Tiss. Org. Cult. 127: 71–83

    Article  CAS  Google Scholar 

  • Haque SM, Ghosh B. 2017. Regeneration of cytologically stable plants through dedifferentiation, redifferentiation, and artificial seeds in Spathoglottis plicata Blume. (Orchidaceae). Hort. Plant J. 3(5): 199–208

    Article  Google Scholar 

  • Haque SM, Ghosh B. 2018. An improved micropropagation protocol for the recalcitrant plant Capsicum–a study with ten cultivars of Capsicum spp. (C. annuum, C. chinense, and C. frutescens) collected from diverse geographical regions of India and Mexico. J. Hort. Sci. Biotechnol. 93: 91–99

    Article  Google Scholar 

  • Ibemhal A, Laishram JM, Dhananjoy CH, Naorem B, Toijam R. 2012. In vitro induction of multiple shoot and root from the rhizome of Kaempferia galanga L. NeBIO 3(3): 46–50

    Google Scholar 

  • Kalpana M, Anbazhagan M. 2009. In vitro production of Kaempferia galanga L. an endangered medicinal plant. J. Phytol. 1: 56–61

    Google Scholar 

  • Mohammed A, Chiruvella KK, Ghanta RG. 2016. In vitro plant regeneration, flowering and fruiting from nodal explants of Andrographis lineata Nees (Acanthaceae). J. Crop Sci. Biotech. 19(3): 195–202

    Article  Google Scholar 

  • Mohanty S, Parida R, Singh S, Joshi RK, Subudhi E, Nayak S. 2011. Biochemical and molecular profiling of micropropagated and conventionally grown Kaempferia galanga. Plant Cell Tiss. Org. Cult. 106: 39–46

    Article  CAS  Google Scholar 

  • Murashige T, Skoog F. 1962. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 15: 495–497

    Article  Google Scholar 

  • Pancharoen O, Tuntiwachwuttikul P, Taylor WC. 1989. Cyclohexane oxide derivatives from Kaempferia angustifolia and Kaempferia species. Photochemistry 28(4): 1143–1148

    Article  CAS  Google Scholar 

  • Parida R, Mohanty S, Kuanar A, Nayak S. 2010. Rapid multiplication and in vitro production of leaf biomass in Kaempferia galanga through tissue culture. Electr. J. Biotechnol. 13(4): 1–8

    Article  CAS  Google Scholar 

  • Rahman MM, Amin MN, Ahamed T, Ali MR, Habib A. 2004. Efficient plant regeneration through somatic embryogenesis from leaf base-derived callus of Kaempferia galanga L. Asian J. Plant Sci. 3(6): 675–678

    Article  CAS  Google Scholar 

  • Raina AP, Abraham Z, Sivaraj N. 2015. Diversity analysis of Kaempferia galanga L. germplasm from South India using DIVA-GIS approach. Ind. Crop Prod. 69: 433–439

    Article  CAS  Google Scholar 

  • Raju CS, Aslam A, Kathiravan K, Palani P, Shajahan A. 2014. Direct somatic embryogenesis and plant regeneration from leaf sheath explants of mango ginger (Curcuma amada Roxb.). In Vitro Cell. Dev. Biol. Plant. 50: 752–759

    Article  CAS  Google Scholar 

  • Rout GR, Palai SK, Samantaray S, Das P. 2001. Effect of growth regulator and culture conditions on shoot multiplication and rhizome formation in ginger (Zingiber officinale Rosc.) in vitro. In Vitro Cell. Dev. Biol. Plant. 37: 814–819

    Article  CAS  Google Scholar 

  • Saensouk P, Muangsan N, Saensouk S, Sirinajun P. 2016. In vitro propagation of Kaempferia marginata Carey ex Roscoe, a native plant species to Thailand. J. Anim. Plant Sci. 26(5): 1405–1410

    CAS  Google Scholar 

  • Sanatombi R, Sanatombi K. 2017. Biotechnology of Zingiber montanum (Koenig) Link ex A. Dietr.: A review. J. Appl. Res. Med. Aromat. Plants 4: 1–4

    Google Scholar 

  • Senarath RMUS, Karunarathna BMAC, Senarath WTPSK, Jimmy GC. 2017. In vitro propagation of Kaempferia galanga (Zingiberaceae) and comparison of larvicidal activity and phytochemical identities of rhizomes of tissue cultured and naturally grown plants. J. Appl. Biotechnol. Bioeng. 2(4): 00040

    Google Scholar 

  • Shirin F, Kumar S, Mishra Y. 2000. In vitro plantlet production system for Kaempferia galanga, a rare Indian medicinal herb. Plant Cell Tiss. Org. Cult. 63: 193–197

    Article  CAS  Google Scholar 

  • Sirat HM, Jamil S, Siew LW. 2005. The rhizome oil of Kaempferia rotunda Val. J. Essent. Oil Res. 17: 306–307

    Article  CAS  Google Scholar 

  • Sukari MA, Neoh BK, Lajis NH, Ee GCL, Rahmani M, Ahmad FH, Yusof UK. 2004. Chemical constituents of Kaempferia angustifolia (Zingiberaceae). Orient. J. Chem. 20: 451–456

    CAS  Google Scholar 

  • Sukari MA, Neoh BK, Rahmani M, Khalid K, Lajis MN, Taufiq-Yap YH, Ee GCL. 2008. Essential oils from rhizomes of Kaempferia angustifolia Roscoe and Kaempferia rotunda L. Ultra. Sci. Phys. Sci.-B 20: 611–616

    CAS  Google Scholar 

  • Sukari MA, Rashid NY, Neoh BK, Abu Bakar NH, Riyanto S, Ee GCL. 2010. Larvicidal activity of some Curcuma and Kaempferia rhizome extracts against dengue fever mosquito Aedes aegypti Linnaeus (Diptera: Culidae). Asian J. Chem. 22: 7915–7919

    CAS  Google Scholar 

  • Sulaiman MR, Zakaria ZA, Duad IA, Hidayat MT. 2008. Antinociceptive and anti-inflammatory activities of the aqueous extract of Kaempferia galanga leaves in animal models. J. Nat. Med. 62: 221–227

    Article  PubMed  CAS  Google Scholar 

  • Sultana A, Hassan L, Ahmad SD, Shah AH, Batool F, Islam MA, Rahman R, Moonmoon S. 2009. In vitro regeneration of ginger using leaf, shoot tip and root explants. Pak. J. Bot. 41(4): 1667–1676

    Google Scholar 

  • Tang SW, Sukari MA, Rahmani M, Lajis NH, Ali AM. 2011. A new abietene diterpene and other constituents from Kaempferia angustifolia Rosc. Molecules 16: 3018–3028

    Article  PubMed  CAS  Google Scholar 

  • Tang SW, Sukari MA, Neoh BK, Yu YSY, Abdul AB, Kifli N, Ee GCL. 2014. Phytochemicals from Kaempferia angustifolia Rosc. and their cytotoxic and antimicrobial activities. BioMed. Res. Int. 2014: 417–674

    Google Scholar 

  • Thomas TD, Hoshino Y. 2016. In vitro strategies for the conservation of some medicinal and horticultural climbers. In: Shahzad A, Sharma S, Siddiqui SA, eds, Biotechnological strategies for the conservation of medicinal and ornamental climbers. Springer, Cham, pp 259–290

    Chapter  Google Scholar 

  • Tyagi RK, Agrawal A, Mahalakshmi C, Hussain Z, Tyagi H. 2007. Low-cost media for in vitro conservation of turmeric (Curcuma longa L.) and genetic stability assessment using RAPD markers. In Vitro Cell. Dev. Biol. Plant. 43: 51–58

    Article  CAS  Google Scholar 

  • Vincent KA, Mathew KM, Hariharan M. 1992. Micropropagation of Kaempferia galanga L.–a medicinal plant. Plant Cell. Tiss. Org. Cult. 28: 229–230

    Article  CAS  Google Scholar 

  • Vipunngeun N, Palanuvej C, Ruangrungsi N. 2007. Essential oil from Kaempferia angustifolia rhizome: chemical compositions and antimicrobial activities. J. Health. Res. 21: 275–278

    CAS  Google Scholar 

  • Viu AFM, Viu MAO, Tavares AR, Vianello F, Lima GPP. 2009. Endogenous and exogenous polyamines in the organogenesis in Curcuma longa L. Sci. Hortic. 121(4): 501–504

    Article  CAS  Google Scholar 

  • Woerdenbag HJ, Windono T, Bos R, Riswan S, Quax WJ. 2004. Composition of the essential oils of Kaempferia rotunda L. and Kaempferia angustifolia Roscoe rhizomes from Indonesia. Flavour. Fragr. J. 19: 145–148

    CAS  Google Scholar 

  • Yeap YSY, Kassim NK, Ng RC, Ee GCL, Yazan LS, Musa KH. 2017. Antioxidant properties of ginger (Kaempferia angustifolia Rosc.) and its chemical markers. Int. J. Food Prop. 20: 1158–1172

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Biswajit Ghosh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haque, S.M., Ghosh, B. Micropropagation of Kaempferia angustifolia Roscoe - An Aromatic, Essential Oil Yielding, Underutilized Medicinal Plant of Zingiberaceae Family. J. Crop Sci. Biotechnol. 21, 147–153 (2018). https://doi.org/10.1007/s12892-017-0051-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12892-017-0051-0

Key words

Navigation