Skip to main content
Log in

Electrochemical Synthesis of Ammonia Based on Co3Mo3N Catalyst and LiAlO2–(Li,Na,K)2CO3 Composite Electrolyte

  • Original Research
  • Published:
Electrocatalysis Aims and scope Submit manuscript

Abstract

Cobalt molybdenum nitride (Co3Mo3N) catalyst was synthesised through ammonolysis of the corresponding precursors by flowing pure ammonia gas. The catalyst was characterised by X-ray diffraction (XRD) and scanning electron microscopy (SEM). Ammonia was successfully synthesised from wet hydrogen and dry nitrogen at atmospheric pressure using Co3Mo3N–Ag composite as cathode, Ag–Pd alloy as anode and LiAlO2–(Li/Na/K)2CO3 composite as an electrolyte. Ammonia formation was investigated at 400, 425 and 450 °C, and the maximum observed ammonia formation rate was 3.27×10−10 mol s−1 cm−2 at 450 °C when applied at 0.8 V. The catalytic activity of Co3Mo3N for electrochemical ammonia synthesis is lower than that of Pd. The successful synthesis of ammonia demonstrates that LiAlO2–(Li/Na/K)2CO3 composite exhibits protonic or/and oxygen ion conduction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. M. Appl, Ammonia: principles and industrial practice (Wiley-VCH Weinheim, Germany, 1999)

    Book  Google Scholar 

  2. US and G. Survey, Mineral Commodity Summaries, (Geological Survey, 2012)

  3. R. Lan, S.W. Tao, RSC Adv. 3, 18016–18021 (2013)

    Article  CAS  Google Scholar 

  4. I.A. Amar, R. Lan, C.T. Petit, S.W. Tao, J. Solid State Electrochem. 15, 1845–1860 (2011)

    Article  CAS  Google Scholar 

  5. S. Giddey, S.P.S. Badwal, A. Kulkarni, Int. J. Hydrogen Energy 38, 14576–14594 (2013)

    Article  CAS  Google Scholar 

  6. R. Lan, J.T.S. Irvine, S.W. Tao, Int. J. Hydrogen Energy 37, 1482–1494 (2012)

    Article  CAS  Google Scholar 

  7. F. Koleli, D.B. Kayan, J. Electroanal. Chem. 638, 119–122 (2010)

    Article  Google Scholar 

  8. A. Tsuneto, A. Kudo, T. Sakata, J. Electroanal. Chem. 367, 183–188 (1994)

    Article  CAS  Google Scholar 

  9. G. Marnellos, M. Stoukides, Science 282, 98–100 (1998)

    Article  CAS  Google Scholar 

  10. Z.J. Li, R.Q. Liu, Y.H. Xie, S. Feng, J.D. Wang, Solid State Ionics 176, 1063–1066 (2005)

    Article  CAS  Google Scholar 

  11. Y. Guo, B. Liu, Q. Yang, C. Chen, W. Wang, G. Ma, Electrochem. Commun. 11, 153–156 (2009)

    Article  CAS  Google Scholar 

  12. W. Wang, X. Cao, W. Gao, F. Zhang, H. Wang, G. Ma, J. Membr. Sci. 360, 397–403 (2010)

    Article  CAS  Google Scholar 

  13. R. Lan, J.T. Irvine, S.W. Tao, Sci. Rep. 3, 1145 (2013)

    Article  Google Scholar 

  14. I.A. Amar, C.T.G. Petit, L. Zhang, R. Lan, P.J. Skabara, S.W. Tao, Solid State Ionics 201, 94–100 (2011)

    Article  CAS  Google Scholar 

  15. I.A. Amar, C.T.G. Petit, G. Mann, R. Lan, P.J. Skabara, S.W. Tao, Int. J. Hydrogen Energy 39, 4322–4330 (2014)

    Article  CAS  Google Scholar 

  16. R. Lan, K.A. Alkhazmi, I.A. Amar, S.W. Tao, Electrochim. Acta 123, 582–587 (2014)

    Article  CAS  Google Scholar 

  17. R. Lan, K.A. Alkhazmi, I.A. Amar, S.W. Tao, Appl. Catal. B Environ. 152–153, 212–217 (2014)

    Article  Google Scholar 

  18. L. Roux, J. Hanus, J. Francois, M. Sigrist, Sol. Energy Mater. 7, 299–312 (1982)

    Article  CAS  Google Scholar 

  19. W.R. Lambrecht, M. Miao, P. Lukashev, J. Appl. Phys. 97, 10D306-310D306-303 (2005)

  20. K.-I. Aika, A. Ozaki, J. Catal. 14, 311–321 (1969)

    Article  CAS  Google Scholar 

  21. H. Zhong, X. Chen, H. Zhang, M. Wang, S.S. Mao, Appl. Phys. Lett. 91, 163103-163103-163103 (2007)

  22. H. Zhong, H. Zhang, G. Liu, Y. Liang, J. Hu, B. Yi, Electrochem. Commun. 8, 707–712 (2006)

    Article  CAS  Google Scholar 

  23. R. Kojima, K.-I. Aika, Appl. Catal. A Gen. 219, 141–147 (2001)

    Article  CAS  Google Scholar 

  24. C.J. Jacobsen, Chem. Commun., 1057–1058 (2000)

  25. D. McKay, J.S.J. Hargreaves, J.L. Rico, J.L. Rivera, X.L. Sun, J. Solid State Chem. 181, 325–333 (2008)

    Article  CAS  Google Scholar 

  26. R. Kojima, K. Aika, Appl. Catal. A Gen. 218, 121–128 (2001)

    Article  CAS  Google Scholar 

  27. R. Kojima, K.-I. Aika, Appl. Catal. A Gen. 215, 149–160 (2001)

    Article  CAS  Google Scholar 

  28. J.S.J. Hargreaves, D. McKay, J. Mol. Catal. A Chem. 305, 125–129 (2009)

    Article  CAS  Google Scholar 

  29. I.A. Amar, R. Lan, C.T.G. Petit, V. Arrighi, S.W. Tao, Solid State Ionics 182, 133–138 (2011)

    Article  CAS  Google Scholar 

  30. M.M. El-Desoky, M.S. Al-Assiri, A.A. Bahgat, J. Alloys Compd. 590, 572–578 (2014)

    Article  CAS  Google Scholar 

  31. G.J. Janz, M.R. Lorenz, J. Chem. Eng. Data 6, 321–323 (1961)

    Article  CAS  Google Scholar 

  32. C. Xia, Y. Li, Y. Tian, Q. Liu, Y. Zhao, L. Jia, Y. Li, J. Power Sources 188, 156–162 (2009)

    Article  CAS  Google Scholar 

  33. J. Huang, Z. Mao, Z. Liu, C. Wang, Electrochem. Commun. 9, 2601–2605 (2007)

    Article  CAS  Google Scholar 

  34. R. Chockalingam, S. Basu, Int. J. Hydrogen Energy 36, 14977–14983 (2011)

    Article  CAS  Google Scholar 

  35. S. Li, X. Wang, B. Zhu, Electrochem. Commun. 9, 2863–2866 (2007)

    Article  CAS  Google Scholar 

  36. F. Xie, C. Wang, Z. Mao, Z. Zhan, Int. J. Hydrogen Energy 38, 11085–11089 (2013)

    Article  CAS  Google Scholar 

  37. B. Zhu, I. Albinsson, C. Andersson, K. Borsand, M. Nilsson, B.-E. Mellander, Electrochem. Commun. 8, 495–498 (2006)

    Article  CAS  Google Scholar 

  38. X. Wang, Y. Ma, S. Li, A.-H. Kashyout, B. Zhu, M. Muhammed, J. Power Sources 196, 2754–2758 (2011)

    Article  CAS  Google Scholar 

  39. B. Nettelblad, B. Zhu, B.-E. Mellander, Phys. Rev. B 55, 6232–6237 (1997)

    Article  CAS  Google Scholar 

  40. L. Zhang, R. Lan, A. Kraft, S.W. Tao, Electrochem. Commun. 13, 582–585 (2011)

    Article  CAS  Google Scholar 

  41. L. Fan, G. Zhang, M. Chen, C. Wang, J. Di, B. Zhu, Int. J. Electrochem. Sci. 7, 8420–8435 (2012)

    CAS  Google Scholar 

  42. S. Klinsrisuk, PhD Adobe Acrobat Document, 18 MB, (University of St. Andrews, 2010).

  43. S. Li, Z. Lü, N. Ai, K. Chen, W. Su, J. Power Sources 165, 97–101 (2007)

    Article  CAS  Google Scholar 

  44. C.-H. Li, S.-H. Hu, K.-W. Tay, Y.-P. Fu, Ceram. Int. 38, 1557–1562 (2012)

    Article  CAS  Google Scholar 

  45. J.T.S. Irvine, D.C. Sinclair, A.R. West, Adv. Mater. 2, 132–138 (1990)

    Article  CAS  Google Scholar 

  46. Z.J. Li, R.Q. Liu, J.D. Wang, Y.H. Xie, F. Yue, J. Solid State Electrochem. 9, 201–204 (2005)

    Article  CAS  Google Scholar 

  47. A. Skodra, M. Stoukides, Solid State Ionics 180, 1332–1336 (2009)

    Article  CAS  Google Scholar 

  48. A. Sclafani, V. Augugliaro, M. Schiavello, J. Electrochem. Soc. 130, 734–736 (1983)

    Article  CAS  Google Scholar 

  49. V. Kordali, G. Kyriacou, C. Lambrou, Chem. Commun., 1673–1674 (2000)

Download references

Acknowledgments

The authors gratefully thank EPSRC SuperGen XIV ‘Delivery of Sustainable Hydrogen’ project (Grant No. EP/G01244X/1) for the funding. One of the authors (Ibrahim A. Amar) thanks The Libyan Cultural Affairs, London for the support of his study in UK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shanwen Tao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amar, I.A., Lan, R., Petit, C.T.G. et al. Electrochemical Synthesis of Ammonia Based on Co3Mo3N Catalyst and LiAlO2–(Li,Na,K)2CO3 Composite Electrolyte. Electrocatalysis 6, 286–294 (2015). https://doi.org/10.1007/s12678-014-0242-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12678-014-0242-x

Keywords

Navigation