Skip to main content
Log in

Determining the Active Surface Area for Various Platinum Electrodes

  • Published:
Electrocatalysis Aims and scope Submit manuscript

Abstract

Various methods, i.e., the adsorption/stripping of adsorbed probe species, such as hydrogen (H), copper (Cu), and carbon monoxide (CO), oxygen and hydroxide (O/OH), potentiostatic CO/H displacement as well as double layer capacitance are exploited to evaluate the electrochemically active surface areas (ECAs) of platinum (Pt) foils, chemically deposited Pt thin film, and carbon-supported Pt nanoparticle electrodes. For the relatively smooth Pt electrodes (roughness factor < 3), the measurements from the stripping of H, Cu, and CO adlayers and CO/H displacement at 0.08 V (vs. RHE) give similar ECAs. With the increase of the surface roughness, it was found that the ECAs deduced from the different methods have the order of CO/H displacement less than the stripping of under potential deposition (UPD) Cu monolayer less than the stripping of the UPD-H adlayer. Possible origins for the discrepancies as well as the applicability of all the abovementioned methods for determining ECAs of various Pt electrodes are discussed, and the UPD-Cu method is found to be the most appropriate technique for the determination of ECAs of Pt electrodes with high roughness factors or composed of nanoparticles with high dispersion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. R. Parsons, T. VanderNoot, The oxidation of small organic molecules: a survey of recent fuel cell related research. J. Electroanal. Chem. 257, 9 (1988)

    Article  CAS  Google Scholar 

  2. A. Hamnett, Mechanism and electrocatalysis in the direct methanol fuel cell. Catal. Today 38, 445 (1997)

    Article  CAS  Google Scholar 

  3. N.M. Markovic, P.N. Ross, Surface science studies of model fuel cell electrocatalysts. Surf. Sci. Rep. 45, 117 (2002)

    Article  CAS  Google Scholar 

  4. W. Vielstich, A. Lamm, H.A. Gasteiger, in Handbook of fuel cells, vol. 2, chap 21 and references cited therein, ed. by W. Vielstich, A. Lamm, H.A. Gasteiger (Wiley, Chichester 2003)

  5. S. Trasatti, O.A. Petrii, Real surface-area measurements in electrochemistry. J. Electroanal. Chem. 327, 353 (1992)

    Article  CAS  Google Scholar 

  6. G. Jerkiewicz, Electrochemical hydrogen adsorption and absorption. Part 1: under-potential deposition of hydrogen. Electrocatal 1, 179 (2010)

    Article  CAS  Google Scholar 

  7. R.W. Lindstrom, Y.E. Seidel, Z. Jusys, M. Gustavsson, B. Wickman, B. Kasemo, R.J. Behm, Electrocatalysis and transport effects on nanostructured Pt/GC electrodes. J. Electroanal. Chem. 644, 90 (2010)

    Article  Google Scholar 

  8. M.J. Watt-Smith, J.M. Friedrich, S.P. Rigby, T.R. Ralph, F.C. Walsh, Determination of the electrochemically active surface area of Pt/C PEM fuel cell electrodes using different adsorbates. J. Phys. D Appl. Phys. 41, 174004 (2008)

    Article  Google Scholar 

  9. R.W. Lindstrom, K. Kortsdottir, M. Wesselmark, A. Oyarce, C. Lagergren, G. Lindbergh, Active area determination of porous Pt electrodes used in polymer electrolyte fuel cells: temperature and humidity effect. J. Electrochem. Soc. 157, 1795 (2010)

    Article  Google Scholar 

  10. Q.S. Chen, J. Solla-Gullon, S.G. Sun, J.M. Feliu, The potential of zero total charge of Pt nanoparticles and polycrystalline electrodes with different surface structure. The role of anion adsorption in fundamental electrocatalysis. Electrochim. Acta 55, 7982 (2010)

    Article  CAS  Google Scholar 

  11. C.L. Green, A. Kucernak, Determination of the platinum and ruthenium surface areas in platinum-ruthenium alloy electrocatalysts by underpotential deposition of copper. I. Unsupported catalysts. J. Phys. Chem. B 106, 1036 (2002)

    Article  CAS  Google Scholar 

  12. T. Nagel, N. Bogolowski, H. Baltruschat, Towards a determination of the active surface area of polycrystalline and nanoparticle electrodes by Cu upd and CO oxidation. J. Appl. Electrochem. 36, 1297 (2006)

    Article  CAS  Google Scholar 

  13. K. Kinoshita, P.N. Ross, Oxide stability and chemisorption properties of supported ruthenium electrocatalysts. J. Electroanal. Chem. 78, 313 (1977)

    Article  CAS  Google Scholar 

  14. A. Cuesta, A. Couto, A. Rincon, M.C. Perez, A. Lopez-Cudero, C. Gutierrez, Potential dependence of the saturation CO coverage of Pt electrodes: the origin of the pre-peak in CO-stripping voltammograms. Part 3: Pt(poly). J. Electroanal. Chem. 586, 184 (2006)

    Article  CAS  Google Scholar 

  15. Y. Morimoto, E.B. Yeager, CO oxidation on smooth and high area Pt, Pt-Ru and Pt-Sn electrodes. J. Electroanal. Chem. 441, 77 (1998)

    Article  CAS  Google Scholar 

  16. T.J. Schmidt, M. Noeske, H.A. Gasteiger, R.J. Behm, P. Britz, W. Brijoux, H. Bonnemann, Electrocatalytic activity of PtRu alloy colloids for CO and CO/H-2 electrooxidation: stripping voltammetry and rotating disk measurements. Langmuir 13, 2591 (1997)

    Article  CAS  Google Scholar 

  17. E. Herrero, L.J. Buller, H.D. Abruna, Underpotential deposition at single crystal surfaces of Au, Pt, Ag and other materials. Chem. Rev. 101, 1897 (2001)

    Article  CAS  Google Scholar 

  18. E. Leiva, Recent developments in the theory of metal upd. Electrochim. Acta 41, 2185 (1996)

    Article  CAS  Google Scholar 

  19. M.C. Tavares, S.A.S. Machado, L.H. Mazo, Study of hydrogen evolution reaction in acid medium on Pt micro electrodes. Electrochim. Acta 46, 4359 (2001)

    Article  CAS  Google Scholar 

  20. Z. Jusys, R.J. Behm, Methanol oxidation on a carbon-supported Pt fuel cell catalyst - a kinetic and mechanistic study by differential electrochemical mass spectrometry. J. Phys. Chem. B 105, 10874 (2001)

    Article  CAS  Google Scholar 

  21. Z. Radovic-Hrapovic, G. Jerkiewicz, The temperature dependence of the cyclic-voltammetry response for the Pt(110) electrode in aqueous H2SO4 solution. J. Electroanal. Chem. 499, 61 (2001)

    Article  CAS  Google Scholar 

  22. A. Zolfaghari, G. Jerkiewicz, The temperature dependence of hydrogen and anion adsorption at a Pt(100) electrode in aqueous H2SO4 solution. J. Electroanal. Chem. 420, 11 (1997)

    Article  CAS  Google Scholar 

  23. A. Zolfaghari, G. Jerkiewicz, New findings on hydrogen and anion adsorption at a Pt(111) electrode in aqueous H2SO4 solution generated by temperature variation. J. Electroanal. Chem. 422, 1 (1997)

    Article  CAS  Google Scholar 

  24. R. Gomez, J.M. Orts, B. Alvarez-Ruiz, J.M. Feliu, Effect of temperature on hydrogen adsorption on Pt(111), Pt(110), and Pt(100) electrodes in 0.1 M HClO4. J. Phys. Chem. B 108, 228 (2004)

    Article  CAS  Google Scholar 

  25. A. Miki, S. Ye, M. Osawa, Surface-enhanced IR absorption on platinum nanoparticles: an application to real-time monitoring of electrocatalytic reactions. Chem. Commun. 14, 1500 (2002)

    Article  Google Scholar 

  26. Y.X. Chen, A. Miki, S. Ye, H. Sakai, M. Osawa, Formate, an active intermediate for direct oxidation of methanol on Pt electrode. J. Am. Chem. Soc. 125, 3680 (2003)

    Article  CAS  Google Scholar 

  27. Y.X. Chen, S. Ye, M. Heinen, Z. Jusys, M. Osawa, R.J. Behm, Application of in-situ attenuated total reflection-fourier transform infrared spectroscopy for the understanding of complex reaction mechanism and kinetics: formic acid oxidation on a Pt film electrode at elevated temperatures. J. Phys. Chem. B 110, 9534 (2006)

    Article  CAS  Google Scholar 

  28. K. Kunimatsu, H. Uchida, M. Osawa, M. Watanabe, In situ infrared spectroscopic and electrochemical study of hydrogen electrooxidation on Pt electrode in sulfuric acid. J. Electroanal. Chem. 587, 299 (2006)

    Article  CAS  Google Scholar 

  29. Y.X. Chen, M. Heinen, Z. Jusys, R.J. Behm, Kinetics and mechanism of the electrooxidation of formic acid - spectroelectrochemical studies in a flow cell. Angew. Chem. Int. Edit. 45, 981 (2006)

    Article  CAS  Google Scholar 

  30. T.J. Schmidt, H.A. Gasteiger, G.D. Stab, P.M. Urban, D.M. Kolb, R.J. Behm, Characterization of high-surface area electrocatalysts using a rotating disk electrode configuration. J. Electrochem. Soc. 145, 2354 (1998)

    Article  CAS  Google Scholar 

  31. B.E. Conway, H. Angerstein-Kozlowska, W.B.A. Sharp, E.E. Criddle, Ultrapurification of water for electrochemical and surface chemical work by catalytic pyrodistillation. Anal. Chem. 45, 1331 (1973)

    Article  CAS  Google Scholar 

  32. T. Biegler, R. Woods, Limiting oxygen coverage on smooth platinum anodes in acid solution. J. Electroanal. Chem. 20, 73 (1969)

    Article  CAS  Google Scholar 

  33. G. Jerkiewicz, G. Tremiliosi-Filho, B.E. Conway, Significance of the apparent limit of anodic oxide film formation at Pt: saturation coverage by the quasi two-dimensional state. J. Electroanal. Chem. 334, 359 (1992)

    Article  CAS  Google Scholar 

  34. R. Gomez, J.M. Feliu, A. Aldaz, M.J. Weaver, Validity of double-layer charge-corrected voltammetry for assaying carbon monoxide coverages on ordered transition metals: comparisons with adlayer structures in electrochemical and ultrahigh vacuum environments. Surf. Sci. 410, 48 (1998)

    Article  CAS  Google Scholar 

  35. B.E. Conway, Electrochemical oxide film formation at noble-metals as a surface-chemical process. Prog. Surf. Sci. 49, 331 (1995)

    Article  CAS  Google Scholar 

  36. B.E. Conway, The electrochemical study of multiple-state adsorption in monolayers. Acc. Chem. Res. 14, 49 (1981)

    Article  CAS  Google Scholar 

  37. G.G. Barna, S.N. Frank, T.H. Teherani, A scan rate dependent determination of platinum areas. J. Electrochem. Soc. 129, 746 (1982)

    Article  CAS  Google Scholar 

  38. C.H. Hamann, A. Hamnett, W. Vielstich, Electrochemistry (Wiley-VCH, New York, 2007), p. 75

    Google Scholar 

  39. R. Gomez, H.S. Yee, G.M. Bommarito, J.M. Feliu, H.D. Abruna, Anion effects and the mechanism of Cu Upd on Pt(111) - x-ray and electrochemical studies. Surf. Sci. 335, 101 (1995)

    Article  CAS  Google Scholar 

  40. J.M. Orts, R. Gomez, J.M. Feliu, A. Aldaz, J. Clavilier, Potentiostatic charge displacement by exchanging adsorbed species on Pt(111) electrodes-acidic electrolytes with specific anion adsorption. Electrochim. Acta 39, 1519 (1994)

    Article  CAS  Google Scholar 

  41. J.M. Feliu, J.M. Orts, R. Gomez, A. Aldaz, J. Clavilier, New information on the unusual adsorption states of Pt(111) in sulfuric-acid-solutions from potentiostatic adsorbate replacement by CO. J. Electroanal. Chem. 372, 265 (1994)

    Article  CAS  Google Scholar 

  42. A. Lopez-Cudero, A. Cuesta, C. Gutierrez, Potential dependence of the saturation CO coverage of Pt electrodes: the origin of the pre-peak in CO-stripping voltammograms. Part 2: Pt(100). J. Electroanal. Chem. 586, 204 (2006)

    Article  CAS  Google Scholar 

  43. M. Arenz, K.J.J. Mayrhofer, V. Stamenkovic, B.B. Blizanac, T. Tomoyuki, P.N. Ross, N.M. Markovic, The effect of the particle size on the kinetics of CO electrooxidation on high surface area Pt catalysts. J. Am. Chem. Soc. 127, 6819 (2005)

    Article  CAS  Google Scholar 

  44. K.J.J. Mayrhofer, M. Hanzlik, M. Arenz, The influence of electrochemical annealing in CO saturated solution on the catalytic activity of Pt nanoparticles. Electrochim. Acta 54, 5018 (2009)

    Article  CAS  Google Scholar 

  45. W.G. Pell, A. Zolfaghari, B.E. Conway, Capacitance of the double-layer at polycrystalline Pt electrodes bearing a surfaceoxide film. J. Electroanal. Chem. 532, 13 (2002)

    Article  CAS  Google Scholar 

  46. E.I. Khrushcheva, M.R. Tarasevich, Electrochemical determination of surface area of metals. Russ. Chem. Rev. 47, 416 (1978)

    Google Scholar 

Download references

Acknowledgments

This work was supported by the 100 Talents Program of the Chinese Academy of Science, National Natural Science Foundation of China (NSFC) (project no. 20773116, 21073176) and the 973 Program from the Ministry of Science and Technology of China (project no. 2010CB923302).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Xia Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, D., Tao, Q., Liao, L.W. et al. Determining the Active Surface Area for Various Platinum Electrodes. Electrocatal 2, 207–219 (2011). https://doi.org/10.1007/s12678-011-0054-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12678-011-0054-1

Keywords

Navigation