Skip to main content
Log in

Analysis of Temperature Losses of the Liquid Steel in a Ladle Furnace During Desulfurization Stage

  • Technical Paper
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

In this research, a multiphase numerical simulation (steel–slag–argon) was carried out by coupling the VOF model with the transitory heat losses of the liquid steel during the injection of argon in the secondary refining process. To model the radiation in the free surface of the ladle, three models, P-1, discrete ordinates, and Rosseland, were considered. The thermal behavior of magnesia-carbon (MgO-C) and high alumina (Al2O3), which are commonly used in the industry, as a work wall was compared. Likewise, the behavior of two slag of different chemical composition was analyzed with two layer thicknesses. The results of the fluid dynamics agreed with those obtained in a physical scale model with the PIV technique. In addition, it was found that the Rosseland model allowed to quantify the radiative heat losses with a good approximation according to the results obtained in the industry. It was observed that the more viscous slag with greater thickness reduced the opening of the slag layer. Finally, the heat losses in the liquid steel could be controlled by manipulating the variables of thickness and viscosity of the slag and also the type of refractory of the ladle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

a :

Absorption coefficient (m−1)

C :

Linear-anisotropic phase function coefficient (–)

C 1ε, C 2ε :

Empirical constants of kε turbulence model (–)

C µ :

Empirical constant of kε turbulence model (–)

C p :

Heat capacity (J kg−1 K−1)

E :

Energy (m2 s−2)

g :

Gravity acceleration (m s−2)

G k :

Generation of turbulence kinetic energy (–)

h :

Sensible enthalpy (J)

I :

Intensity radiation (–)

k :

Sensible enthalpy (J)

k eff :

Intensity radiation (–)

k t :

Turbulent kinetic energy (m2 s−2)

n :

Effective conductivity (W m−1 K−1)

P :

Intensity radiation (–)

q r :

Turbulent kinetic energy (m2 s−2)

Q ar :

Effective conductivity (W m−1 K−1)

\(\vec{r}^{{\prime }}\) :

Turbulent thermal conductivity (W m−1 K−1)

\(\vec{s}\) :

Refractive index of medium (–)

\(\overrightarrow {s}^{{\prime }}\) :

Effective conductivity (W m−1 K−1)

T :

Refractive index of medium (–)

t :

Time (s)

\(\vec{u}\) :

Velocity (m s−1)

u i, u j :

Mean velocity in the directions i, j in the Cartesian coordinate directions (m s−1)

ν ar :

Argon gas velocity (m s−1)

α q :

Phase fraction of a control cell for different phases (–)

ρ :

Density (kg m−3)

ε :

Dissipation rate of turbulent kinetic energy (m2 s−3)

µ :

Molecular viscosity (Pa s)

µ t :

Turbulent viscosity (Pa s)

µ eff :

Effective viscosity (Pa s)

τ eff :

Viscous dissipation (N m−2)

ϕ :

Phase function (–)

\(\Omega^{{\prime }}\) :

Solid angle (–)

σ :

Stefan–Boltzmann constant (W m−2 K−4)

σ s :

Scattering coefficient (m−1)

σ k, σ ε :

Prandtl turbulent number for kε model (–)

References

  1. Glaws P C, and Kor G J, The making, Shaping and Treating of Steel, Mc-Graw Hil, Pittsburgh PA (1998), p 661.

    Google Scholar 

  2. Gosh A, Secondary Steelmaking: Principles and Aplications, CRC Press, Boca Ratón Florida (2001), p 255.

    Google Scholar 

  3. Gerd S, Secondary Metallurgy, Verlag-Sthaleisen, Dusseldorf, Alemania, (2002), p 13.

    Google Scholar 

  4. Urquhart R, Guthrie R I L, and Howat D, J S Afr Inst Min Metall 74 (1973) 132.

    Google Scholar 

  5. Gaston A, and Medina M, Bol Soc Esp Ceram VIDR 33 (1994) 41.

    Google Scholar 

  6. Fredman T, Torkulla J, and Saxén H, Metall Mater Trans B 30 (1999) 323.

    Article  Google Scholar 

  7. Volkova O, and Janke D, ISIJ Int 43(2003) 1185.

    Article  Google Scholar 

  8. Zabadal J R S, Vilhena M T M B, and Bogado S Q, Ironmak Steelmak 31 (2004) 227.

    Article  Google Scholar 

  9. Gupta N, and Chandra S, ISIJ Int 44(2004) 1517.

    Article  Google Scholar 

  10. Peaslee K, Lekakh S, and Sander T, Proceedings of 59th SFSA T&O, Missouri, USA, (2005), p 4.2:1.

  11. Qing L, Kai W, Guangguang Y, Chuangji H, and Kaike C, AISTech-Iron and Steel Technology Conference Proceedings, Cleveland, USA, (2006), p 785.

    Google Scholar 

  12. Gaston A, Sánchez Sarmiento G, and Sylvestre Begnis J S, Lat Am Appl Res 38 (2008) 259.

    Google Scholar 

  13. Glaser B, Gornerup M, and Sichen D, Steel Res Int 82 (2011) 1425.

    Article  Google Scholar 

  14. Diniz I, Da Silva C, Da Silva I, Rodriguez Ferreira E, and Seschadri V, Adv Mater Res 1125 (2015) 166.

    Article  Google Scholar 

  15. Li G, Liu J, and Jiang G, Adv Mech Eng 6 (2015) 1.

  16. Tripathi A, Kumar Saha J, Bhadur Singh J, and Kumar Ajmani S, ISIJ Int 52 (2012) 1591.

    Article  Google Scholar 

  17. Zhang S F, Wen L Y, Bai C G, Chen D F, and Long Z J, Appl Math Model 33 (2009) 2646.

    Article  Google Scholar 

  18. Castillejos A H, Salcudean M E, and Brimacombe J K, Metall Trans B 20 (1989) 603.

    Article  Google Scholar 

  19. Austin P R, Camplin J M, Herbertson J, and Taggart I J, ISIJ Int 32 (1992) 196.

    Article  Google Scholar 

  20. Chakraborty S, and Sahai Y, Metall Mater Trans B, 23 (1992) 135.

    Article  Google Scholar 

  21. Mazumdar D, and Guthrie R I L, ISIJ Int 35 (1995) 1.

    Article  Google Scholar 

  22. Krishnapisharody K, and Irons G, Metall Mater Trans B 37 (2006) 763.

    Article  Google Scholar 

  23. Peranandhanthan M, and Mazumdar D, ISIJ Int 50 (2010) 1622.

    Article  Google Scholar 

  24. Maruyama A, and Iguchi M, JSEM 12 (2012) 7.

    Google Scholar 

  25. Li M, Liu Z, and Li B, ISIJ Int 55 (2015) 1337.

    Article  Google Scholar 

  26. Mazumdar D, Dhandapani P, and Sarvanakumar R, ISIJ Int 57 (2017) 286.

    Article  Google Scholar 

  27. Lv N, Wu L, Wang H, Dong Y, and Su C, J. Iron Steel Res Int 24 (2017) 243.

    Article  Google Scholar 

  28. Ilegbusi O J, and Szekely J, Trans Iron Steel Inst Jpn 27 (1987) 563.

    Article  Google Scholar 

  29. Subagyo, Brooks G A, and Irons G A, ISIJ Int 43 (2003) 262.

  30. Krishnapisharody K, and Irons G A, ISIJ Int 48 (2008) 1807.

    Article  Google Scholar 

  31. Krishnapisharody K, and Irons G A, Metall Mater Trans B 46B (2015) 191.

    Article  Google Scholar 

  32. Jonsson L, and Jonsson P, ISIJ Int 36 (1996) 1127.

    Article  Google Scholar 

  33. Pan Y, Grip C, and Björkman B, Scand J Metall 32 (2003) 71.

    Article  Google Scholar 

  34. Ganguly S, and Chakraborty S, ISIJ Int 44 (2004) 537.

    Article  Google Scholar 

  35. Llanos C A, García S, Ramos-Banderas J A, Barreto J J, and Solorio G, ISIJ Int 50 (2010) 396.

    Article  Google Scholar 

  36. Li B, Yin H, Zhou C, and Tsukihashi F, ISIJ Int 48 (2008) 1704.

    Article  Google Scholar 

  37. Liu H, Qi Z, and Xu M, Steel Res Int 82 (2011) 440.

    Article  Google Scholar 

  38. Liu Y, He Z, and Pan L, Adv Mech Eng 2014 (2014) 1.

    Google Scholar 

  39. Li L, Liu Z, Cao M, and Li B, JOM 67 (2015) 1459.

    Article  Google Scholar 

  40. Kulju T, Ollila S, Keiski R, and Muurinen E, IFAC-Pap OnLine 48 (2015) 1.

    Article  Google Scholar 

  41. Singh U, Anapagaddi R, Mangal S, Padmanabhan K A, and Singh A K, Metall Mater Trans B 47 (2016) 1804.

    Article  Google Scholar 

  42. Al-Harbi M. N., Simulation of Ladle Degassing in Steel Making Process, Ph D Thesis, University of Leicester, United Kingdom (2007).

  43. Maldonado-Parra F D, Ramírez-Argáez M A, Nava A, and González C, ISIJ Int 51 (2011) 1110.

    Article  Google Scholar 

  44. González H, Ramos-Banderas J A, Torres-Alonso E, Solorio-Díaz G, and Hernández-Bocanegra C A, J Iron Steel Res Int 24 (2017) 888.

    Article  Google Scholar 

  45. Van Doormaal J P, and Raithby G D, Numer Heat Transf 7 (1984) 147.

    Google Scholar 

  46. Launder B E, and Spalding D B, Comput Methods Appl Mech Eng 3 (1974) 269.

    Article  Google Scholar 

  47. Hirt C W, and Nichols B D, J Comput Phys 39 (1981) 201.

    Article  Google Scholar 

  48. Howell J R, Siegel R, and Pinar Mengüc M, Thermal Radiation Heat Transfer. CRC Press, Washington DC. (1992) p 619.

  49. Cheng P, AIAA J 2 (1964) 1662.

    Article  Google Scholar 

  50. Jönsson P G, Jonsson L, and Sichen D, ISIJ Int 37 (1997) 484.

    Article  Google Scholar 

  51. Turkdogan E T, Fundamentals of Steelmaking, Maney Publishing, Leeds (2010) p 247.

    Google Scholar 

  52. González-Bernal R, Solorio-Díaz G, Ramos-Banderas A, Torres-Alonso E, Hernández-Bocanegra C A, and Zenit R, Steel Res Int 89 (2017) 1.

    Google Scholar 

Download references

Acknowledgements

The authors want to acknowledge the CONACyT, TecNM, ITM and CÁTEDRAS CONACyT for their continuous support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. A. Ramos-Banderas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farrera-Buenrostro, J.E., Hernández-Bocanegra, C.A., Ramos-Banderas, J.A. et al. Analysis of Temperature Losses of the Liquid Steel in a Ladle Furnace During Desulfurization Stage. Trans Indian Inst Met 72, 899–909 (2019). https://doi.org/10.1007/s12666-018-1548-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-018-1548-9

Keywords

Navigation