Skip to main content

Advertisement

Log in

The transfer of oxygen isotopic signals from precipitation to drip water and modern calcite on the seasonal time scale in Yongxing Cave, central China

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

Stable isotope data of precipitation (δ18Op and deuterium excess), drip water (δ18Od), and modern calcite precipitates (δ18Oc and δ13Cc) from Yongxing Cave, central China, are presented, with monthly sampling intervals from June 2013 to September 2016. Moderate correlations between the monthly variation of δ18Op values (from − 11.5 to − 0.7‰) and precipitation amount (r = − 0.59, n = 34, p < 0.01) and deuterium excess (r = 0.39, n = 31, p < 0.01) imply a combined effect of changes in precipitation amount and atmospheric circulation. At five drip sites, the δ18Od values have a much smaller variability (from − 9.1 to − 7.5‰), without seasonal signals, probably a consequence of the mixing in the karst reservoir with a deep aquifer. The mean δ18Od value (− 8.4‰) for all drip waters is significantly more negative than the mean δ18Op value (− 6.9‰) weighted by precipitation amount, but close to the wet season (May to September) mean value (− 8.3‰), suggesting that a threshold of precipitation amount must be exceeded to provide recharge. Calculation based on the equilibrium fractionation factor indicates that the δ18Oc values are not in isotopic equilibrium with their corresponding drip waters, with a range of disequilibrium effects from 0.4 to 1.4‰. The δ18Oc and δ13Cc values generally increase progressively away from the locus of precipitation on glass plates. The disequilibrium effects in the cave are likely caused by progressive calcite precipitation and CO2 degassing related to a high gradient of CO2 concentration between drip waters and cave air. Our study provides an important reference to interpret δ18Oc records from the monsoon region of China.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Araguás-Araguás L, Froehlich K, Rozanski K (1998) Stable isotope composition of precipitation over Southeast Asia. J Geophys Res Atmos 103:28721–28742

    Article  Google Scholar 

  • Ban FM, Pan GX, Zhu J, Cai BG, Tan M (2008) Temporal and spatial variations in the discharge and dissolved organic carbon of drip waters in Beijing Shihua Cave, China. Hydrol Process 22:3749–3758

    Article  Google Scholar 

  • Caballero E, Jiménez De Cisneros C, Reyes E (1996) A stable isotope study of cave seepage waters. Appl Geochem 11:583–587

    Article  Google Scholar 

  • Chen ST, Wang YJ, Cheng H, Edwards RL, Wang XF, Kong XG, Liu DB (2016) Strong coupling of Asian Monsoon and Antarctic climates on sub-orbital timescales. Sci Rep 6:32995

    Article  Google Scholar 

  • Cheng H, Edwards RL, Broecker WS, Denton GH, Kong XG, Wang YJ, Zhang R, Wang XF (2009) Ice age terminations. Science 326:248–252

    Article  Google Scholar 

  • Cheng H, Edwards RL, Sinha A, Spötl C, Yi L, Chen ST, Kelly M, Kathayat G, Wang XF, Li XL, Kong XG, Wang YJ, Ning YF, Zhang HW (2016) The Asian monsoon over the past 640,000 years and ice age terminations. Nature 534:640–646

    Article  Google Scholar 

  • Clemens SC, Prell WL, Sun YB (2010) Orbital-scale timing and mechanisms driving Late Pleistocene Indo-Asian summer monsoons: reinterpreting cave speleothem δ 18O. Paleoceanography 25:PA4207–PA4226

    Article  Google Scholar 

  • Coplen TB (2002) Compilation of minimum and maximum isotope ratios of selected elements in naturally occurring terrestrial materials and reagents. USGS—US Geological Survey. Water Resour 226:215–236

    Google Scholar 

  • Coplen TB (2007) Calibration of the calcite–water oxygen-isotope geothermometer at Devils Hole, Nevada, a natural laboratory. Geochim Cosmochim Acta 71:3948–3957

    Article  Google Scholar 

  • Dansgaard W (1964) Stable isotopes in precipitation. Tellus 16:436–468

    Article  Google Scholar 

  • Dayem KE, Molnar P, Battisti DS, Roe GH (2010) Lessons learned from oxygen isotopes in modern precipitation applied to interpretation of speleothem records of paleoclimate from eastern Asia. Earth Planet Sci Lett 295:219–230

    Article  Google Scholar 

  • Deininger M, Fohlmeister J, Scholz D, Mangini A (2012) Isotope disequilibrium effects: The influence of evaporation and ventilation effects on the carbon and oxygen isotope composition of speleothems – A model approach. Geochim Cosmochim Acta 96:57–79

    Article  Google Scholar 

  • Dorale JA, Liu ZH (2009) Limitations of Hendy test criteria in judging the Paleoclimatic suitability of Speleothems and the need for replication. J Cave Karst Stud 71:73–80

    Google Scholar 

  • Du Q, Wang Z, Wang J, Deng Q, Yang F (2016) Geochronology and geochemistry of tuff beds from the Shicaohe Formation of Shennongjia Group and tectonic evolution in the northern Yangtze Block, South China. Int J Earth Sci 105:521–535

    Article  Google Scholar 

  • Duan WH, Ruan JY, Luo WJ, Li TY, Tian LJ, Zeng GN, Zhang DZ, Bai YJ, Li JL, Tao T, Zhang PZ, Baker A, Tan M (2016) The transfer of seasonal isotopic variability between precipitation and drip water at eight caves in the monsoon regions of China. Geochim Cosmochim Acta 183:250–266

    Article  Google Scholar 

  • Feng WM, Banner JL, Guilfoyle AL, Musgrove M, James EW (2012) Oxygen isotopic fractionation between drip water and speleothem calcite: a 10-year monitoring study, central Texas, USA. Chem Geol 304–305:53–67

    Article  Google Scholar 

  • Feng WM, Casteel RC, Banner JL, Heinze-Fry A (2014) Oxygen isotope variations in rainfall, drip-water and speleothem calcite from a well-ventilated cave in Texas, USA: Assessing a new speleothem temperature proxy. Geochim Cosmochim Acta 127:233–250

    Article  Google Scholar 

  • Friedman I, O’Neil JR (1977) Compilation of Stable Isotope Fractionation Factors of Geochemical Interest. In: Fleischer M (ed) Data of Geochemistry, 6th edn. United States Government Printing Office, Washington, pp 440–440K

    Google Scholar 

  • Genty D (2008) Palaeoclimate research in Villars Cave (Dordogne SW-France). Int J Speleol 37:173–191

    Article  Google Scholar 

  • Genty D, Labuhn I, Hoffmann G, Danis PA, Mestre O, Bourges F, Wainer K, Massault M, Van Exter S, Régnier E, Orengo Ph, Falourd S, Minster B (2014) Rainfall and cave water isotopic relationships in two South-France sites. Geochim Cosmochim Acta 131:323–343

    Article  Google Scholar 

  • Hendy CH (1971) The isotopic geochemistry of speleothems—I. The calculation of the effects of different modes of formation on the isotopic composition of speleothems and their applicability as palaeoclimatic indicators. Geochim Cosmochim Acta 35:801–824

    Article  Google Scholar 

  • Johnson KR, Ingram BL (2004) Spatial and temporal variability in the stable isotope systematics of modern precipitation in China: implications for paleoclimate reconstructions. Earth Planet Sci Lett 220:365–377

    Article  Google Scholar 

  • Johnson KR, Hu C, Belshaw NS, Henderson GM (2006) Seasonal trace-element and stable-isotope variations in a Chinese speleothem: The potential for high-resolution paleomonsoon reconstruction. Earth Planet Sci Lett 244:394–407

    Article  Google Scholar 

  • Jones IC, Banner JL (2003) Estimating recharge thresholds in tropical karst island aquifers: Barbados, Puerto Rico and Guam. J Hydrol 278:131–143

    Article  Google Scholar 

  • Jones IC, Banner JL, Humphrey JD (2000) Estimating recharge in a tropical karst aquifer. Water Resour Res 36:1289–1300

    Article  Google Scholar 

  • Kim ST, O’Neil JR (1997) Equilibrium and nonequilibrium oxygen isotope effects in synthetic carbonates. Geochim Cosmochim Acta 61:3461–3475

    Article  Google Scholar 

  • Kohn MJ, Welker JM (2005) On the temperature correlation of δ 18O in modern precipitation. Earth Planet Sci Lett 231:87–96

    Article  Google Scholar 

  • Lachniet MS (2009) Climatic and environmental controls on speleothem oxygen-isotope values. Quat Sci Rev 28:412–432

    Article  Google Scholar 

  • Lee JE, Risi C, Fung I, Worden J, Scheepmaker RA, Lintner B, Frankenberg C (2012) Asian monsoon hydrometeorology from TES and SCIAMACHY water vapor isotope measurements and LMDZ simulations: implications for speleothem climate record interpretation. J Geophys Res 117:D15112

    Article  Google Scholar 

  • Lewis SC, LeGrande AN, Kelley M, Schmidt GA (2013) Modeling insights into deuterium excess as an indicator of water vapor source conditions. J Geophys Res Atmos 118:243–262

    Article  Google Scholar 

  • Li TY, Shen CC, Li HC, Li JY, Chiang HW, Song SR, Yuan DX, Lin CDJ, Gao P, Zhou LP, Wang JL, Ye MY, Tang LL, Xie SY (2011) Oxygen and carbon isotopic systematics of aragonite speleothems and water in Furong Cave, Chongqing, China. Geochim Cosmochim Acta 75:4140–4156

    Article  Google Scholar 

  • Liu JR, Song XF, Yuan GF, Sun XM, Liu X, Wang SQ (2010) Characteristics of δ 18O in precipitation over Eastern Monsoon China and the water vapor sources. Chin Sci Bull 55:200–211

    Article  Google Scholar 

  • Liu JR, Song XF, Yuan GF, Sun XM, Yang LH (2014a) Stable isotopic compositions of precipitation in China. Tellus B 66:22567

    Article  Google Scholar 

  • Liu ZY, Wen XY, Brady EC, Otto-Bliesner B, Yu G, Lu HY, Cheng H, Wang YJ, Zheng WP, Ding YH, Edwards RL, Cheng J, Liu W, Yang H (2014b) Chinese cave records and the East Asia Summer Monsoon. Quat Sci Rev 83:115–128

    Article  Google Scholar 

  • Luo W, Wang S (2008) Transmission of oxygen isotope signals of precipitation-soil water-drip water and its implications in Liangfeng Cave of Guizhou, China. Chin Sci Bull 53:3364–3370

    Article  Google Scholar 

  • Maher BA (2008) Holocene variability of the East Asian summer monsoon from Chinese cave records: a re-assessment. Holocene 18:861–866

    Article  Google Scholar 

  • Maher BA, Thompson R (2012) Oxygen isotopes from Chinese caves: records not of monsoon rainfall but of circulation regime. J Quat Sci 27:615–624

    Article  Google Scholar 

  • Mickler PJ, Banner JL, Stern L, Asmerom Y, Edwards RL, Ito E (2004) Stable isotope variations in modern tropical speleothems: evaluating equilibrium vs. kinetic isotope effects. Geochim Cosmochim Acta 68:4381–4393

    Article  Google Scholar 

  • Mickler PJ, Stern LA, Banner JL (2006) Large kinetic isotope effects in modern speleothems. Geol Soc Am Bull 118:65–81

    Article  Google Scholar 

  • Mühlinghaus C, Scholz D, Mangini A (2009) Modelling fractionation of stable isotopes in stalagmites. Geochim Cosmochim Acta 73:7275–7289

    Article  Google Scholar 

  • Onac BP, Pace-Graczyk K, Atudirei V (2008) Stable isotope study of precipitation and cave drip water in Florida (USA): implications for speleothem-based paleoclimate studies. Isotopes Environ Health Stud 44:149–161

    Article  Google Scholar 

  • Pape JR, Banner JL, Mack LE, Musgrove M, Guilfoyle A (2010) Controls on oxygen isotope variability in precipitation and cave drip waters, central Texas, USA. J Hydrol 385:203–215

    Article  Google Scholar 

  • Pausata FSR, Battisti DS, Nisancioglu KH, Bitz CM (2011) Chinese stalagmite δ 18O controlled by changes in the Indian monsoon during a simulated Heinrich event. Nat Geosci 4:474–480

    Article  Google Scholar 

  • Polag D, Scholz D, Mühlinghaus C, Mühlinghaus C, Spötl C, Schröder-Ritzrau A, Segl M, Mangini A (2010) Stable isotope fractionation in speleothems: Laboratory experiments. Chem Geol 279:31–39

    Article  Google Scholar 

  • Pu JB, Wang AY, Shen LC, Yin JJ, Yuan DX, Zhao HP (2016) Factors controlling the growth rate, carbon and oxygen isotope variation in modern calcite precipitation in a subtropical cave, Southwest China. J Asian Earth Sci 119:167–178

    Article  Google Scholar 

  • Riechelmann DFC, Schröder-Ritzrau A, Scholz D, Fohlmeister J, Spötl C, Richter DK, Mangini A (2011) Monitoring Bunker Cave (NW Germany): a prerequisite to interpret geochemical proxy data of speleothems from this site. J Hydrol 409:682–695

    Article  Google Scholar 

  • Romanov D, Kaufmann G, Dreybrodt W (2008) δ 13C profiles along growth layers of stalagmites: comparing theoretical and experimental results. Geochim Cosmochim Acta 72:438–448

    Article  Google Scholar 

  • Tan M (2014) Circulation effect: response of precipitation δ 18O to the ENSO cycle in monsoon regions of China. Clim Dynam 42:1067–1077

    Article  Google Scholar 

  • Tooth AF, Fairchild IJ (2003) Soil and karst aquifer hydrological controls on the geochemical evolution of speleothem-forming drip waters, Crag Cave, southwest Ireland. J Hydrol 273:51–68

    Article  Google Scholar 

  • Tremaine DM, Froelich PN, Wang Y (2011) Speleothem calcite farmed in situ: Modern calibration of δ 18O and δ 13C paleoclimate proxies in a continuously-monitored natural cave system. Geochim Cosmochim Acta 75:4929–4950

    Article  Google Scholar 

  • Ünal-İmer E, Shulmeister J, Zhao JX, Tonguç Uysal I, Feng YX, Duc Nguyen A, Yüce G (2015) An 80 kyr-long continuous speleothem record from Dim Cave, SW Turkey with paleoclimatic implications for the Eastern Mediterranean. Sci Rep 5:13560

    Article  Google Scholar 

  • Wang YJ, Cheng H, Edwards RL, An ZS, Wu JY, Shen CC, Dorale JA (2001) A high-resolution absolute-dated late Pleistocene Monsoon record from Hulu Cave, China. Science 294:2345–2348

    Article  Google Scholar 

  • Wang YJ, Cheng H, Edwards RL, Kong XG, Shao XH, Chen ST, Wu JY, Jiang XY, Wang XF, An ZS (2008) Millennial- and orbital-scale changes in the East Asian monsoon over the past 224,000 years. Nature 451:1090–1093

    Article  Google Scholar 

  • Williams PW, Fowler A (2002) Relationship between oxygen isotopes in rainfall, cave percolation waters and speleothem calcite at Waitomo, New Zealand. J Hydrol New Zeal 41:53–70

    Google Scholar 

  • Yonge CJ, Ford DC, Gray J, Schwarcz HP (1985) Stable isotope studies of cave seepage water. Chem Geol 58:97–105

    Article  Google Scholar 

  • Yuan DX, Cheng H, Edwards RL, Dykoski CA, Kelly MJ, Zhang ML, Qing JM, Lin YS, Wang YJ, Wu JY, Dorale JA, An ZS, Cai YJ (2004) Timing, duration, and transitions of the last interglacial Asian monsoon. Science 304:575–578

    Article  Google Scholar 

  • Zhou YC, Wang SJ, Xie XN, Luo WJ, Li TY (2005) Significance and dynamics of drip water responding to rainfall in four caves of Guizhou, China. Chin Sci Bull 50:154–161

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to the anonymous reviewers for their detailed and very helpful comments that have helped improve this paper substantially. This work was supported by Grants from the National Nature Science Found of China (no. 41571102, 41572151, and 41130210), the Priority Academic Program Development of Jiangsu Higher Education Institutions (no. 164320H116), Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, and the Research Innovation Program for College Graduates of Jiangsu Province (no. KYCX17_1063 and KYLX15_0750).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongjin Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Q., Wang, Y., Zhao, K. et al. The transfer of oxygen isotopic signals from precipitation to drip water and modern calcite on the seasonal time scale in Yongxing Cave, central China. Environ Earth Sci 77, 474 (2018). https://doi.org/10.1007/s12665-018-7607-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-018-7607-z

Keywords

Navigation