Skip to main content

Advertisement

Log in

River water quality across the Himalayan regions: elemental concentrations in headwaters of Yarlung Tsangbo, Indus and Ganges River

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

To study the water quality across the Himalayan region, a total of 43 river water samples were collected in September 2012 from the Yarlung Tsangbo (Brahmaputra), Indus and Ganges basins. We measured the common water quality parameters (pH, EC, TDS, and water temperature) and analyzed the element concentrations (As, Cr, S, Sr, Tl, B, Ba, Ca, Al, Fe, K, Mg, Mn, Na, Rb, and Ti) using ICP-AES. The results show that all the rivers have an alkaline environment with pH from 7.9 to 8.9. TDS has a positive relationship with Ca and Mg concentrations. The elemental contents are comparable among the samples from different river basins. The enrichment factor of As in river water across Himalayas showed a high value at 30, indicating the impacts of anthropogenic activities. The river water quality in this region is under the influence of climate change on the glacier melting, which will affect the water chemistry and the seasonal discharge of river runoff.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ahmad T, Khanna P, Chakrapani G, Balakrishnan S (1998) Geochemical characteristics of water and sediment of the Indus river, Trans-Himalaya, India: constraints on weathering and erosion. J Asian Earth Sci 16:333–346

    Article  Google Scholar 

  • Akhtar M, Ahmad N, Booij M (2008) The impact of climate change on the water resources of Hindukush-Karakorum-Himalaya region under different glacier coverage scenarios. J Hydrol 355:148–163

    Article  Google Scholar 

  • Ali KF, De Boer DH (2007) Spatial patterns and variation of suspended sediment yield in the upper Indus River basin, northern Pakistan. J Hydrol 334:368–387

    Article  Google Scholar 

  • Anthwal A, Joshi V, Sharma A, Anthwal S (2006) Retreat of Himalayan glaciers—indicator of climate change. Nature and Science 4:53–59

    Google Scholar 

  • Barnett TP, Adam JC, Lettenmaier DP (2005) Potential impacts of a warming climate on water availability in snow-dominated regions. Nature 438:303–309

    Article  Google Scholar 

  • Bolch T, Kulkarni A, Kääb A, Huggel C, Paul F, Cogley J, Frey H, Kargel J, Fujita K, Scheel M (2012) The state and fate of Himalayan glaciers. Science 336:310–314

    Article  Google Scholar 

  • Chakrapani G (2005) Major and trace element geochemistry in upper Ganga River in the Himalayas, India. Environ Geol 48:189–201

    Article  Google Scholar 

  • Chen JS, Wang FY, Xia XH, Zhang LT (2005) Major elment chemistry of the Changjiang (Yangtzta River). Chem Geol 187:231–255

    Article  Google Scholar 

  • Collins DN, Hasnain SI (1995) Runoff and sediment transport from glacierized basins at the Himalayan scale. IAHS Publ-Series Proc Reports-Intern Assoc Hydrol Sci 226:17–26

    Google Scholar 

  • Cong ZY, Kang SC, Smirnov A, Holben B (2009) Aerosol optical properties at Nam Co, a remote site in central Tibetan Plateau. Atmos Res 92:42–48

    Article  Google Scholar 

  • Cong ZY, Kang SC, Dong SP, Liu X, Qin DH (2010) Elemental and individual particle analysis of atmospheric aerosols from high Himalayas. Environ Monit Assess 160:323–335

    Article  Google Scholar 

  • Debon F, Lefort P, Sheppard SMF, Sonet J (1986) The four plutonic belts of the Transhimalaya-Himalaya: A chemical, mineralogical, isotopic, and chronological synthesis along a Tibet-Nepal section. J Petrol 27:219–250

    Article  Google Scholar 

  • Demirak A, Yilmaz F, Tuna AL, Ozdemir N (2006) Heavy metals in water, sediment and tissues of Leuciscuc cephalus from a stream in southwestern Turkey. Chemosphere 63:1451–1458

    Article  Google Scholar 

  • Dubey CS, Mishra BK, Shukla DP, Singh RP, Tajbakhsh M, Sakhare P (2012) Anthropogenic arsenic menace in Delhi Yamuna flood plains. Environ Earth Sci 65(1):131–139

    Article  Google Scholar 

  • Gambrell R, Khalid R, Verloo M, Patrick Jr W (1977) Transformations of heavy metals and plant nutrients in dredged sediments as affected by oxidation reduction potential and pH, vol 2. Materials and methods/results and discussion. In: DTIC document

  • Guan Z, Chen C, Ou Y, Fan Y, Zhang Y, Chen Z, Bao S, Cu Y, He X, Zhang M (1984) Rivers and lakes in Tibet. Science Technology Press, Beijing

    Google Scholar 

  • Haloi N, Sarma H (2012) Heavy metal contaminations in the groundwater of Brahmaputra flood plain: an assessment of water quality in Barpeta District, Assam (India). Environ Monit Assess 184(10):6229–6237. doi:10.1007/s10661-011-2415-x

    Article  Google Scholar 

  • Hasnain SI (2002) Himalayan glaciers meltdown: impact on South Asian Rivers. International Association of Hydrological Sciences, Wallingford, pp 417–423

    Google Scholar 

  • Hren MT, Chamberlain CP, Hilley GE, Blisniuk PM, Bookhagen B (2007) Major ion chemistry of the Yarlung Tsangpo-Brahmaputra river: chemical weathering, erosion, and CO2 consumption in the southern Tibetan plateau and eastern syntaxis of the Himalaya. Geochim Cosmochim Acta 71:2907–2935

    Article  Google Scholar 

  • Huang X, Sillanpää M, Duo B, Gjessing ET (2008) Water quality in the Tibetan Plateau: metal contents of four selected rivers. Environ Pollut 156:270–277

    Article  Google Scholar 

  • Huang X, Sillanpää M, Gjessing ET, Vogt RD (2009) Water quality in the Tibetan Plateau: major ions and trace elements in the headwaters of four major Asian rivers. Sci Total Environ 407:6242–6254

    Article  Google Scholar 

  • Huang X, Sillanpää M, Gjessing ET, Peräniemi S, Vogt RD (2010) Environmental impact of mining activities on the surface water quality in Tibet: Gyama valley. Sci Total Environ 408:4177–4184

    Article  Google Scholar 

  • Huang X, Sillanpää M, Gjessing E, Peräniemi S, Vogt R (2011) Water quality in the southern Tibetan Plateau: chemical evaluation of the Yarlung Tsangpo (Brahmaputra). River Res Appl 27:113–121

    Article  Google Scholar 

  • Immerzeel WW, van Beek LPH, Bierkens MFP (2010) Climate change will affect the Asian water towers. Science 328:1382–1385

    Article  Google Scholar 

  • Jacob T, Wahr J, Pfeffer WT, Swenson S (2012) Recent contributions of glaciers and ice caps to sea level rise. Nature 482:514–518

    Article  Google Scholar 

  • Jin ZD, You CF, Yu TL, Wang BS (2014) Sources and flux pf trace elements in river water collected from Lake Qinghai catchment, NE Tibetan Plateau. Appl Geochmis 25:1536–1546

    Article  Google Scholar 

  • Kang S C, Mayewski PA, Qin DH, Yan YP, Zhang DQ, Hou SG, Ren JW (2002) Twentieth century increase of atmospheric ammonia recorded in Mount Everest ice core. J Geophys Res 107 (D20)

  • Kaser G, Großhauser M, Marzeion B (2010) Contribution potential of glaciers to water availability in different climate regimes. PNAS 107:20223–20227

    Article  Google Scholar 

  • Kaspari SD, Mayewski PA, Handley M, Osterberg E, Kang SC, Sneed SB, Hou S, Qin D (2009) Recent increases in atmospheric concentrations of Bi, U, Cs, S and Ca from a 350-year Mount Everest ice core record. J Geophys Res 114(D4). doi:10.1029/2008JD011088

  • Lee K, Hur SD, Hou SG, Hong S, Qin X, Ren J, Liu Y, Rosman KJR, Barbante C, Boutron CF (2008) Atmospheric pollution for trace elements in the remote high-altitude atmosphere in central Asia as recorded in snow from Mt. Qomolangma (Everest) of the Himalayas. Sci Total Environ 404:171–181

    Article  Google Scholar 

  • Li C, Kang S, Zhang Q, Wang F (2009a) Rare earth elements in the surface sediments of the Yarlung Tsangbo (upper Brahmaputra River) sediments, southern Tibetan Plateau. Quatern Int 208:151–157

    Article  Google Scholar 

  • Li C, Kang S, Zhang Q (2009b) Elemental composition of Tibetan Plateau top soils and its effect on evaluating atmospheric pollution transport. Environ Pollut 157:2261–2265

    Article  Google Scholar 

  • Li C, Kang S, Zhang Q, Gao S, Sharma CM (2011) Heavy metals in sediments of the Yarlung Tsangbo and its connection with the arsenic problem in the Gangas-Brahmaputra Basin. Environ Geochem Health 33:23–32

    Article  Google Scholar 

  • Li S, Wang M, Yang Q, Wang H, Zhu J, Zheng B, Zheng Y (2012) Enrichment of arsenic in surface water, stream sediments and soils in Tibet. J Geochem Explor. doi:10.1016/j.gexplo.2012.08.020

  • Li C, Kang S, Chen P, Zhang Q, Mi J, Gao S, Sillanpää M (2014) Geothermal spring causes arsenic contamination in river waters of the southern Tibetan Plateau, China. Environ Earth Sci 71:4143–4148. doi:10.1007/s12665-013-2804-2

    Article  Google Scholar 

  • Liu T (1999) Hydrological characteristics of Yaluzangbu River. Acta Geographica Sinica 54:157–164 (In Chinese with English abstract)

    Google Scholar 

  • Liu L, Ren J, Qin D (2000) Chemical characteristics at the head of Rongbuk River on Mt. Everest. Chin J Environ Sci 21:59–63

    Google Scholar 

  • Mirza N, Mahmood Q, Shah MM, Pervez A, Sultan S (2014) Plants as useful vectors to reduce environmental toxic Arsenic content. Sci World J. doi:10.1155/2014/921581

    Google Scholar 

  • Monirul Qader Mirza M (2005) The Gangas water diversion: environmental effects and implications-An introduction Springer. Kluwer Academic Publishers, Netherlands. pp 1–12. ISBN978-1-4020-2479-5

  • Neal C, Bowes M, Jarvie HP, Scholefield P, Leeks G, Neal M, Rowland P, Wickham H, Harman S, Armstrong L, Sleep D, Lawlor A, Davies CE (2012) Lowland river water quality: a new UK data resource for process and environmental management analysis. Hydrol Process 26(6):949–960

    Article  Google Scholar 

  • Obregón PL, Espinoza-Quinones FR, Módenses AN (2014) Water quality monitoring of the Bezerra River (cascavel, Brazil) using SR-TXRF technique. J Chem Chem Eng 8:587–595

    Google Scholar 

  • Qadir A, Malik RN, Husain SZ (2008) Spatio-temporal variations in water quanlity of Nullah Aik-tributary of the river Chenab, Pakistan. Environ Monit Assess 140:43–59

    Article  Google Scholar 

  • Qiu J (2008) China: The third pole. Nature News 454:393–396

    Article  Google Scholar 

  • Sarin M, Krishnaswami S, Dilli K, Somayajulu B, Moore W (1989) Major ion chemistry of the Ganga-Brahmaputra river system: weathering processes and fluxes to the Bay of Bengal. Geochim Cosmochim Ac 53:997–1009

    Article  Google Scholar 

  • Sarin M, Krishnaswami S, Trivedi J, Sharma K (1992) Major ion chemistry of the Ganga source waters: weathering in the high altitude Himalaya. Proc Indian Acad Sci-Earth Planetary Sci 101:89–98

    Google Scholar 

  • Sheikh JA, Jeelani Gh, Gavali RS, Shah RA (2014) Weathering and enthropogenic influences on the water and sediment chemistry of Wular Lake, Kashmir Himalaya. Environ Earth Sci 71:2837–2846

    Article  Google Scholar 

  • Singh AK Mondal GC, Kumar S, Singh TB, Tewary BK, Singh A (2008) Major ion chemistry, weathering processes and water quality assessment in upper catchment of Damodar River basin, India. Environ Geol 54:745–758

    Article  Google Scholar 

  • Thenkabail PS, Schull M, Turral H (2005) Gangas and Indus river basin land use/land cover (LULC) and irrigated area mapping using continuous streams of MODIS data. Remote Sens Environ 95:317–341

    Article  Google Scholar 

  • Viviroli D, Dürr HH, Messerli B, Meybeck M, Weingartner R (2007) Mountains of the world, water towers for humanity: typology, mapping, and global significance. Water Resour Res 43(7). doi:10.1029/2006WR005653

  • Xu J, Grumbine RE, Shrestha A, Eriksson M, Yang X, Wang Y, Wilkes A (2009) The melting Himalayas: cascading effects of climate change on water, biodiversity, and livelihoods. Conserv Biol 23:520–530

    Article  Google Scholar 

  • Yang D, Zhou C, Ouyang H, Chen C (2012) Characteristics of Variation in Runoff across the Nyangqu River Basin in the Qinghai-Tibet Plateau. J Resour Ecol 3:80–86

    Article  Google Scholar 

  • Yao T (2008) Map of glaciers and lakes on the Tibetan Plateau and the surroundings. Xi’an: Xi’an Cartographic Publishing House

  • Yao T, Thompson L, Yang W, Yu W, Gao Y, Guo X, Yang X, Duan K, Zhao H, Xu B (2012a) Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings. Nat Clim Chang 2:663–667

    Article  Google Scholar 

  • Yao T, Thompson LG, Mosbrugger V, Zhang F, Ma Y, Luo T, Xu B, Yang X, Joswiak DR, Wang W (2012b) Third pole environment (TPE). Environ Develop 3:52–64

    Article  Google Scholar 

  • Zhang Q, Huang J, Wang F, Mark L, Xu J, Armstrong D, Li C, Zhang Y, Kang S (2012) Mercury Distribution and Deposition in Glacier Snow over Western China. Environ Sci Technol 46:5404–5413

    Article  Google Scholar 

  • Zheng W, Kang SC, Feng XB, Zhang QG, Li CL (2010) Mercury speciation and spatial distribution in surface waters of the Yarlung Zangbo River Tibet. Chin Sci Bull 55:2697–2703

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by National Natural Science Foundation of China (41121001, 41225002, 41201074), Academy of Finland (decision number 264307). The authors would like to thank Dr. Qianggong Zhang and Dr. Jie Huang for the field work and Dr. Eveliina Repo for conducting ICP-OES analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mika Sillanpää.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Sillanpää, M., Li, C. et al. River water quality across the Himalayan regions: elemental concentrations in headwaters of Yarlung Tsangbo, Indus and Ganges River. Environ Earth Sci 73, 4151–4163 (2015). https://doi.org/10.1007/s12665-014-3702-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12665-014-3702-y

Keywords

Navigation