Skip to main content

Advertisement

Log in

Sustainable Management of Digestate from the Organic Fraction of Municipal Solid Waste and Food Waste Under the Concepts of Back to Earth Alternatives and Circular Economy

  • Review
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

The anaerobic digestion (AD) of the organic fraction of municipal solid waste (OFMSW) and food waste achieves both environmental and economic benefits. This bio-process, well-known for producing biogas, is used extensively for industrial applications all over the world. Despite the use of AD across the world, the overall sustainability of this process as a source of an alternate fuel (i.e., biomethane) is intrinsically linked to the successful management of one of its major byproducts, the digestate. In order for the digestate to be classified as a “product” rather than a “waste” and to achieve regulatory compliance, this liquid stream needs to undergo biological or physicochemical treatments. The most common treatment for digestate is the use as a soil amendment. Nutrients surplus, variable agricultural seasonal requirements, escalating transportation cost, and market acceptance (e.g., risk for food safety) represents the major obstacle for the use of digestate for agricultural applications. Therefore, it is necessary to study alternative approaches for digestate management and utilization options. One alternative concept is the Back to Earth Alternative (BEA) whose aim is to bring appropriately treated residues back to their non-mobile state, as they were extracted from the earth to be used as raw materials, which would achieve actual closing of the materials cycles. Similarly, the same concept can be introduced into the digestate management process, with the goal of reducing resource costs and mitigate potential impacts on climate change, by employing a more holistic circular economy model instead of linear economy model commonly referred to as “take-make-dispose”. The overarching aim of this study is to introduce the BEA and circular economy concepts into the digestate management process taking into consideration the initial quality of the digestate and the techniques and processes necessary to meet the specific regulatory and quality requirements for the utilization of this waste stream for different applications. Cost benefit analysis and environmental impact were also evaluated for each BEA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Alibardi, L., Cossu, R.: Composition variability of the organic fraction of municipal solid waste and effects on hydrogen and methane production potentials. Waste Manag. 36, 147–155 (2015). doi:10.1016/j.wasman.2014.11.019

    Google Scholar 

  2. Lebersorger, S., Schneider, F.: Discussion on the methodology for determining food waste in household waste composition studies. Waste Manag. 31(9), 1924–1933 (2011). doi:10.1016/j.wasman.2011.05.023

    Google Scholar 

  3. Zhang, R., El-Mashad, H.M., Hartman, K., Wang, F., Liu, G., Choate, C., Gamble, P.: Characterization of food waste as feedstock for anaerobic digestion. Bioresour. Technol. 98(4), 929–935 (2007). doi:10.1016/j.biortech.2006.02.039

    Google Scholar 

  4. Girotto, F., Alibardi, L., Cossu, R.: Food waste generation and industrial uses: a review. Waste Manag. 45, 32–41 (2015). doi:10.1016/j.wasman.2015.06.008

    Google Scholar 

  5. Mataalvarez, J., Llabres, P., Cecchi, F., Pavan, P.: Anaerobic-digestion of the barcelona central food market organic wastes—experimental study. Bioresour. Technol. 39(1), 39–48 (1992). doi:10.1016/0960-8524(92)90054-2

    Google Scholar 

  6. Peres, C.S., Sanchez, C.R., Matumoto, C., Schmidell, W.: Anaerobic biodegradability of the organic-components of municipal solid-wastes (OFMSW). Water Sci. Technol. 25(7), 285–293 (1992)

    Google Scholar 

  7. Möller, K., Müller, T.: Effects of anaerobic digestion on digestate nutrient availability and crop growth: a review. Eng. Life Sci. 12(3), 242–257 (2012). doi: 10.1002/elsc.201100085

    Google Scholar 

  8. Teglia, C., Tremier, A., Martel, J.-L.: Characterization of solid digestates: part 1, Review of existing indicators to assess solid digestates agricultural use. Waste Biomass Valori. 2(1), 43–58 (2011). doi:10.1007/s12649-010-9051-5

    Google Scholar 

  9. Tampio, E., Salo, T., Rintala, J.: Agronomic characteristics of five different urban waste digestates. J. Environ. Manage. 169, 293–302 (2016). doi:10.1016/j.jenvman.2016.01.001

    Google Scholar 

  10. Fuchs, W., Drosg, B.: Assessment of the state of the art of technologies for the processing of digestate residue from anaerobic digesters. Water Sci. Technol. 67(9), 1984–1993 (2013). doi:10.2166/wst.2013.075

    Google Scholar 

  11. BiPRO, F.B.E. Digestate and REACH-position paper. In. Fachverband Biogas; EBA, BiPRO, http://european-biogas.eu/wp-content/uploads/files/2013/11/2013-11-28-Position-paper-digestate-and-REACH-EN-final.pdf (2013). Accessed 08 Aug 2017

  12. Commission, E. Directive 2008/98/EC of the european parliament and of the council of 19 november 2008 on waste and repealing certain directives (waste framework directive).LexUriServ. do (2008). http://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32008L0098&from=EN. Accessed 08 Aug 2017

  13. Commission, E.: Commission Decision of 3 May 2000 replacing Decision 94/3/EC establishing a list of wastes pursuant to Article 1(a) of Council Directive 75/442/EEC on waste and Council Decision 94/904/EC establishing a list of hazardous waste pursuant to Article 1(4) of Council Directive 91/689/EEC on hazardous waste. In: 2000/532/EC.C1147. European Commission, Brussels,Belgium, (2000) http://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32000D0532&from=EN. Accessed 08 Aug 2017

  14. Saveyn, H., Eder, P.: End-of-waste criteria for biodegradable waste subjected to biological treatment (compost & digestate): technical proposals. Publications Office of the European Union, Luxembourg http://ftp.jrc.es/EURdoc/JRC87124.pdf (2014). Accessed 08 Aug 2017

  15. WRAP: Anaerobic digestate: End of waste criteria for the production and use of quality outputs from anaerobic digestion of source-segregated biodegradable waste. In: Agency, E. (ed.). WRAP, Rotherham UK https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/292473/426765_EA_QP_Anaerobic_Digestate_web.pdf (2009). Accessed 08 Aug 2017)

  16. Nkoa, R.: Agricultural benefits and environmental risks of soil fertilization with anaerobic digestates: a review. Agron. Sustain. Dev. 34(2), 473–492 (2014). doi:10.1007/s13593-013-0196-z

    Google Scholar 

  17. PAS, B.: 110: (2010) Specification for whole digestate, separated liquor and separated fibre derived from the anaerobic digestion of source-segregated biodegradable materials. British Standards Institution, London. British Standards Institute. http://www.wrap.org.uk/sites/files/wrap/PAS110_vis_10.pdf (2013). Accessed 08 Aug 2017

  18. Siebert, S.: Quality requirements and quality assurance of digestion residuals in Germany. ECN/ORBIT Worshop The future for Anaerobic Digestion of Organic Waste in Europe. Nüremberg, Germany. http://www.kompost.de/uploads/media/Quality_Requirements_of_digestion_residuals_in_Germany_text_01.pdf (2008). Accessed 08 Aug 2017

  19. Sverige, A.: Årsrapport Certifierad Återvinning, SPCR 120–produktionsåren 2012, 2011, 2010. Avfall Sverige. http://www.avfallsverige.se/fileadmin/uploads/Rapporter/Biologisk/spcr120.pdf (2013). Accessed 08 Aug 2017

  20. Dlgs217/06, G.U. Dlgs 217/06 Italian Legislative Decree 217/06. Gazzetta ufficiale, http://www.arpa.veneto.it/temi-ambientali/rifiuti/file-e-allegati/normativa/normativa-nazionale/2006/dlgs217_06_daGU.pdf (2006). Accessed 08 Aug 2017

  21. AFNOR, B.: NFU 44–051. Amendements organiques, dénominations, spécifications et marquages http://www.simer86.fr/files/wysiwyg/dechets/analyse_compost.pdf (2006). Accessed 08 Aug 2017

  22. Delzeit, R., Kellner, U.: The impact of plant size and location on profitability of biogas plants in Germany under consideration of processing digestates. Biomass Bioenergy 52, 43–53 (2013). doi:10.1016/j.biombioe.2013.02.029

    Google Scholar 

  23. Lukehurst, C.T., Frost, P., Al Seadi, T. Utilisation of digestate from biogas plants as biofertiliser. IEA bioenergy. https://www.iea-biogas.net/files/daten-redaktion/download/publi-task37/Digestate_Brochure_Revised_12-2010.pdf (2010). Accessed 08 Aug 2017

  24. Wellinger, A., Murphy, J.D., Baxter, D.: The biogas handbook: science, production and applications. Woodhead Publishing limited, New Delhi (2013)

    Google Scholar 

  25. Neumann, J., Meyer, J., Ouadi, M., Apfelbacher, A., Binder, S., Hornung, A.: The conversion of anaerobic digestion waste into biofuels via a novel Thermo-Catalytic Reforming process. Waste Manag. 47(Pt A), 141–148 (2016). doi:10.1016/j.wasman.2015.07.001

    Google Scholar 

  26. Fabbri, D., Torri, C.: Linking pyrolysis and anaerobic digestion (Py-AD) for the conversion of lignocellulosic biomass. Curr. Opin. Chem. Biol. 38, 167–173 (2016). doi:10.1016/j.copbio.2016.02.004

    Google Scholar 

  27. Neumann, J., Binder, S., Apfelbacher, A., Gasson, J.R., Ramírez García, P., Hornung, A.: Production and characterization of a new quality pyrolysis oil, char and syngas from digestate–Introducing the thermo-catalytic reforming process. J.Anal. Appl. Pyrol. 113, 137–142 (2015). doi:10.1016/j.jaap.2014.11.022

    Google Scholar 

  28. Monlau, F., Sambusiti, C., Ficara, E., Aboulkas, A., Barakat, A., Carrere, H.: New opportunities for agricultural digestate valorization: current situation and perspectives. Energy Environ. Sci. 8(9), 2600–2621 (2015). doi:10.1039/c5ee01633a

    Google Scholar 

  29. Foundation, E.M. Towards the circular economy: economic and business retionale for an accelerated transition. In, vol. 1. Ellen Marcharthur Foundation https://www.ellenmacarthurfoundation.org/assets/downloads/publications/Ellen-MacArthur-Foundation-Towards-the-Circular-Economy-vol.1.pdf (2013). Accessed 08 Aug 2017

  30. Gregson, N., Crang, M., Fuller, S., Holmes, H.: Interrogating the circular economy: the moral economy of resource recovery in the EU. Economy Soc. 44(2), 218–243 (2015). doi:10.1080/03085147.2015.1013353

    Google Scholar 

  31. Dahlin, A.S., Eriksson, J., Campbell, C.D., Oborn, I.: Soil amendment affects Cd uptake by wheat—are we underestimating the risks from chloride inputs? Sci. Total Environ. 554–555, 349–357 (2016). doi:10.1016/j.scitotenv.2016.02.049

    Google Scholar 

  32. Monlau, F., Francavilla, M., Sambusiti, C., Antoniou, N., Solhy, A., Libutti, A., Zabaniotou, A., Barakat, A., Monteleone, M.: Toward a functional integration of anaerobic digestion and pyrolysis for a sustainable resource management. Comparison between solid-digestate and its derived pyrochar as soil amendment. Appl. Energy. 169, 652–662 (2016). doi:10.1016/j.apenergy.2016.02.084

    Google Scholar 

  33. Riding, M.J., Herbert, B.M., Ricketts, L., Dodd, I., Ostle, N., Semple, K.T.: Harmonising conflicts between science, regulation, perception and environmental impact: the case of soil conditioners from bioenergy. Environ.Int. 75, 52–67 (2015). doi:10.1016/j.envint.2014.10.025

    Google Scholar 

  34. Cossu, R.: Back to Earth Sites: From “nasty and unsightly” landfilling to final sink and geological repository. Waste Manag. 55, 1–2 (2016). doi:10.1016/j.wasman.2016.07.028

    Google Scholar 

  35. Michele, P., Carlo, M., Sergio, S., Fabrizio, A.: Optimization of solid state anaerobic digestion of the OFMSW by digestate recirculation: a new approach. Waste Manag. 35, 111–118 (2015). doi:10.1016/j.wasman.2014.09.009

    Google Scholar 

  36. Quina, M.J., Lopes, D.V., Cruz, L.G., Andrade, J., Martins, R.C., Gando-Ferreira, L.M., Dias-Ferreira, C., Quinta-Ferreira, R.M.: Studies on the chemical stabilisation of digestate from mechanically recovered organic fraction of municipal solid waste. Waste Biomass Valori. 6(5), 711–721 (2015). doi:10.1007/s12649-015-9405-0

    Google Scholar 

  37. Teglia, C., Tremier, A., Martel, J.L.: Characterization of solid digestates: Part 2, Assessment of the quality and suitability for composting of six digested products. Waste Biomass Valori. 2(2), 113–126 (2011). doi:10.1007/s12649-010-9059-x

    Google Scholar 

  38. Zeng, Y., de Guardia, A., Daumoin, M., Benoist, J.-C.: Characterizing the transformation and transfer of nitrogen during the aerobic treatment of organic wastes and digestates. Waste Manag. 32(12), 2239–2247 (2012). doi:10.1016/j.wasman.2012.07.006

    Google Scholar 

  39. Zhang, Y., Banks, C.J., Heaven, S.: Anaerobic digestion of two biodegradable municipal waste streams. J. Environ. Manage. 104, 166–174 (2012). doi:10.1016/j.jenvman.2012.03.043

    Google Scholar 

  40. Trzcinski, A.P., Stuckey, D.C.: Parameters affecting the stability of the digestate from a two-stage anaerobic process treating the organic fraction of municipal solid waste. Waste Manag. 31(7), 1480–1487 (2011). doi:10.1016/j.wasman.2011.02.015

    Google Scholar 

  41. Bustamante, M., Alburquerque, J., Restrepo, A., De la Fuente, C., Paredes, C., Moral, R., Bernal, M.: Co-composting of the solid fraction of anaerobic digestates, to obtain added-value materials for use in agriculture. Biomass Bioenergy. 43, 26–35 (2012). doi:10.1016/j.biombioe.2012.04.010

    Google Scholar 

  42. Eliyan, C.: Anaerobic digestion of municipal solid waste in thermophilic ontinuous operation. Asian Institute of Technology. http://faculty.ait.ac.th/visu/public/uploads/Data/AIT-Thesis/Master%20Thesis%20final/chea%20combined.pdf (2007). Accessed 08 Aug 2017

  43. Tambone, F., Scaglia, B., D’Imporzano, G., Schievano, A., Orzi, V., Salati, S., Adani, F.: Assessing amendment and fertilizing properties of digestates from anaerobic digestion through a comparative study with digested sludge and compost. Chemosphere. 81(5), 577–583 (2010). doi: 10.1016/j.chemosphere.2010.08.034

    Google Scholar 

  44. Rao, M.S., Singh, S.P.: Bioenergy conversion studies of organic fraction of MSW: kinetic studies and gas yield–organic loading relationships for process optimisation. Bioresour. Technol. 95(2), 173–185 (2004). doi:10.1016/j.biortech.2004.02.013

    Google Scholar 

  45. Zeshan. Dry anaerobic digestion of municipal solid waste and digestate management strategies. Asian Institute of Technology http://faculty.ait.ac.th/visu/public/uploads/images/pdf/dissertation_zeshan.pdf (2012). Accessed 08 Aug 2017

  46. Boni, M.R., D’Amato, E., Polettini, A., Pomi, R., Rossi, A.: Effect of ultrasonication on anaerobic degradability of solid waste digestate. Waste Manag. 48, 209–217 (2016). doi:10.1016/j.wasman.2015.10.031

    Google Scholar 

  47. Phil Wallace, G.H., Jim Frederickson, Graham Howell. Biofertiliser management: best practice for agronomic benefit & odour control. In: Tompkins, D. (ed.). vol. OAV036-210. Waste & Resources Action Programme, Cardiff. http://www.wrapcymru.org.uk/sites/files/wrap/Digestate%20odour%20management%20-%20Cymru.pdf (2011). Accessed 08 Aug 2017

  48. Drennan, M.F., DiStefano, T.D.: Characterization of the curing process from high-solids anaerobic digestion. Bioresour. Technol. 101(2), 537–544 (2010). doi:10.1016/j.biortech.2009.08.029

    Google Scholar 

  49. Opatokun, S.A., Yousef, L.F., Strezov, V.: Agronomic assessment of pyrolysed food waste digestate for sandy soil management. J. Environ. Manage. 187, 24–30 (2017). doi:10.1016/j.jenvman.2016.11.030

    Google Scholar 

  50. Buss, W., Graham, M.C., Shepherd, J.G., Mašek, O.: Suitability of marginal biomass-derived biochars for soil amendment. Sci. Total Environ. 547, 314–322 (2016). doi:10.1016/j.scitotenv.2015.11.148

    Google Scholar 

  51. Govasmark, E., Stäb, J., Holen, B., Hoornstra, D., Nesbakk, T., Salkinoja-Salonen, M.: Chemical and microbiological hazards associated with recycling of anaerobic digested residue intended for agricultural use. Waste Manag. 31(12), 2577–2583 (2011). doi:10.1016/j.wasman.2011.07.025

    Google Scholar 

  52. Tampio, E., Marttinen, S., Rintala, J.: Liquid fertilizer products from anaerobic digestion of food waste: mass, nutrient and energy balance of four digestate liquid treatment systems. J. Cleaner Prod. 125, 22–32 (2016). doi:10.1016/j.jclepro.2016.03.127

    Google Scholar 

  53. Lü, F., Cai, T., Shao, L., He, P.: Resource Potential of Liquid Digestate from Food and Kitchen Waste Digestion Associated with Particle Size Fractionation. Appl.Eng.Agric. 31(4), 661 (2015). doi:10.13031/aea.31.10881

    Google Scholar 

  54. De Baere, L.: Partial stream digestion of residual municipal solid waste. Water Sci. Technol. 57(7), 1073–1077 (2008). doi: 10.2166/wst.2008.078

    Google Scholar 

  55. Rollett, A., Taylor, M., Gleadthorpe, A., Vale, M., Litterick, A.. Guidance on suitable organic material applications for land restoration and improvement. https://www.sepa.org.uk/media/162859/sepa-soil-formation-guidance-document.pdf (2015). Accessed 08 Aug 2017

  56. Makádi, M., Tomócsik, A., Orosz, V.: Digestate: a new nutrient source-review. Biogas. InTech. https://www.intechopen.com/books/biogas/digestate-a-new-nutrient-source-review (2012). Accessed 08 Aug 2017

  57. Steele, M.C., Pichtel, J.: Ex-situ remediation of a metal-contaminated superfund soil using selective extractants. J. Environ. Eng. 124(7), 639–645 (1998). doi:10.1061/(ASCE)0733-9372

    Google Scholar 

  58. Kayhanian, M.: Ammonia inhibition in high-solids biogasification: an overview and practical solutions. Environ. Technol. 20(4), 355–365 (1999). doi:10.1080/09593332008616828

    Google Scholar 

  59. Bauer, A., Mayr, H., Hopfner-Sixt, K., Amon, T. Detailed monitoring of two biogas plants and mechanical solid–liquid separation of fermentation residues. J. Biotechnol. 142(1), 56–63 (2009). doi:10.1016/j.jbiotec.2009.01.016

    Google Scholar 

  60. Pivato, A., Vanin, S., Raga, R., Lavagnolo, M.C., Barausse, A., Rieple, A., Laurent, A., Cossu, R.: Use of digestate from a decentralized on-farm biogas plant as fertilizer in soils: an ecotoxicological study for future indicators in risk and life cycle assessment. Waste Manag. 49, 378–389 (2016). doi:10.1016/j.wasman.2015.12.009

    Google Scholar 

  61. Lü, F., Shao, L.-M., Zhang, H., Fu, W.-D., Feng, S.-J., Zhan, L.-T., Chen, Y.-M., He, P.-J.: Application of advanced techniques for the assessment of bio-stability of biowaste-derived residues: a minireview. Bioresour. Technol. (2017). doi:10.1016/j.biortech.2017.06.045

    Google Scholar 

  62. Gómez, R.B., Lima, F.V., Ferrer, A.S.: The use of respiration indices in the composting process: a review. Waste Manag. Res. 24(1), 37–47 (2006). doi: 10.1177/0734242X06062385

    Google Scholar 

  63. Republik Österreich (BGBl.), D.B.f.d. Düngemittelverordnung 1994. In, vol. 1994_1007_0. (1994)

  64. DME, D.M.o.E.: Bekendtgørelse om anvendelse af affald til jordbrugsformål (Slambekendtgørelsen. In, vol. BEK nr 1650 af 13/12/2006. http://www.eu.dk/samling/20081/kommissionsforslag/kom(2008)0811/bilag/3/657181.pdf (2006). Accessed 08 Aug 2017

  65. Fuchs, J.G., Galli, U., Schleiss, K., Wellinger, A., ASCP Guidelines: Quality criteria for composts and digestates from biodegradable waste management. Association of Swiss Compost Plants (ASCP) in Collaboration with the Swiss Biogas Forum. http://www.biophyt.ch/documents/vks_english_000.pdf (2001). Accessed 08 Aug 2017

  66. Commission, E.: Working Document: Biological Treatment of Biowaste, 2nd draft (Online). In: Commission, E. (ed.). https://www.compost.it/www/pubblicazioni_on_line/biod.pdf (2001). Accessed 08 Aug 2017

  67. Dai, X., Duan, N., Dong, B., Dai, L.: High-solids anaerobic co-digestion of sewage sludge and food waste in comparison with mono digestions: Stability and performance. Waste Manag. 33(2), 308–316 (2013). doi: 10.1016/j.wasman.2012.10.018

    Google Scholar 

  68. Kim, H.-W., Han, S.-K., Shin, H.-S.: The optimisation of food waste addition as a co-substrate in anaerobic digestion of sewage sludge. Waste Manag. Res. 21(6), 515–526 (2003). doi:10.1177/0734242X0302100604

    Google Scholar 

  69. Kupper, T., Rahel, C.B., Bucheli, T.D.: Organic pollutants in compost and digestate: occurrence, fate and impacts. Compost and digestate: sustainability, benefits, impacts for the environment and for plant production (2008). https://core.ac.uk/download/pdf/10926886.pdf#page=33 Accessed 08 Aug 2017

  70. Brändli, R.C., Bucheli, T.D., Kupper, T., Furrer, R., Stahel, W.A., Stadelmann, F.X., Tarradellas, J.: Organic pollutants in compost and digestate. Part 1. Polychlorinated biphenyls, polycyclic aromatic hydrocarbons and molecular markers. J. Environ. Monit. 9(5), 456–464 (2007). doi: 10.1039/B617101J

    Google Scholar 

  71. Al Seadi, T., Lukehurst, C.: Quality management of digestate from biogas plants used as fertiliser. IEA Bioenergy, Task 2012. https://www.iea-biogas.net/files/daten-redaktion/download/publi-task37/digestate_quality_web_new.pdf (2012). Accessed 08 Aug 2017

  72. Garcia-Sánchez, M., Garcia-Romera, I., Cajthaml, T., Tlustoš, P., Száková, J.: Changes in soil microbial community functionality and structure in a metal-polluted site: the effect of digestate and fly ash applications. J. Environ. Manage. 162, 63–73 (2015). doi:10.1016/j.jenvman.2015.07.042

    Google Scholar 

  73. Gusiatin, Z.M., Kurkowski, R., Brym, S., Wiśniewski, D.: Properties of biochars from conventional and alternative feedstocks and their suitability for metal immobilization in industrial soil. Environ. Sci. Pollut. Res. 23(21), 21249–21261 (2016). doi:10.1007/s11356-016-7335-4

    Google Scholar 

  74. Crombie, K., Mašek, O., Sohi, S.P., Brownsort, P., Cross, A.: The effect of pyrolysis conditions on biochar stability as determined by three methods. GCB Bioenergy. 5(2), 122–131 (2013). doi:10.1111/gcbb.12030

    Google Scholar 

  75. Buss, W., Kammann, C., Koyro, H.-W.: Biochar reduces copper toxicity in Chenopodium quinoa Willd. in a Sandy Soil. J. Environ. Qual. 41, 1157–1165 (2012). doi:10.2134/jeq2011.0022

    Google Scholar 

  76. Mukherjee, S., Weihermüller, L., Tappe, W., Hofmann, D., Köppchen, S., Laabs, V., Vereecken, H., Burauel, P.: Sorption–desorption behaviour of bentazone, boscalid and pyrimethanil in biochar and digestate based soil mixtures for biopurification systems. Sci. Total Environ. 559, 63–73 (2016). doi: 10.1016/j.scitotenv.2016.03.145

    Google Scholar 

  77. Müller, K., Magesan, G., Bolan, N.: A critical review of the influence of effluent irrigation on the fate of pesticides in soil. Agric. Ecosyst. Environ. 120(2), 93–116 (2007). doi:10.1016/j.agee.2006.08.016

    Google Scholar 

  78. Loganathan, V.A., Feng, Y., Sheng, G.D., Clement, T.P.: Crop-residue-derived char influences sorption, desorption and bioavailability of atrazine in soils. Soil Sci. Soc. Am. J. 73(3), 967–974 (2009). doi:10.2136/sssaj2008.0208

    Google Scholar 

  79. Mukherjee, S., Tappe, W., Weihermueller, L., Hofmann, D., Köppchen, S., Laabs, V., Schroeder, T., Vereecken, H., Burauel, P.: Dissipation of bentazone, pyrimethanil and boscalid in biochar and digestate based soil mixtures for biopurification systems. Sci. Total Environ. 544, 192–202 (2016). doi:10.1016/j.scitotenv.2015.11.111

    Google Scholar 

  80. Council, E. Directive 1999/31/EC on the landfill of waste. Off J Eur Union L182, 1–19. http://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:31999L0031&from=EN (1999). Accessed 08 Aug 2017

  81. Council, E. Council Decision 2003/33/EC of 19 December 2002 establishing criteria and procedures for the acceptance of waste at landfills persuant to Article 16 of and Annex II to Directive 1999/31/EC. Official Journal of the European Communities 16 (2003), L11. http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2003:011:0027:0049:EN:PDF (2003). Accessed 08 Aug 2017

  82. WRAP, P.F.C.: A review of enhancement techniques,processing options and novel digestate products. In: Enhancement and treatment of digestates from anaerobic digestion. Waste & Resource Action Programme, Oxon, United Kindom. http://www.wrap.org.uk/sites/files/wrap/Digestates%20from%20Anaerobic%20Digestion%20A%20review%20of%20enhancement%20techniques%20and%20novel%20digestate%20products_0.pdf (2012). Accessed 08 Aug 2017

  83. Lü, F., Zhou, Q., Wu, D., Wang, T., Shao, L., He, P.: Dewaterability of anaerobic digestate from food waste: relationship with extracellular polymeric substances. Chem. Eng. J. 262, 932–938 (2015). doi:10.1016/j.cej.2014.10.051

    Google Scholar 

  84. Guercini, S., Castelli, G., Rumor, C.: Vacuum evaporation treatment of digestate: full exploitation of cogeneration heat to process the whole digestate production. Water Sci. Technol. 70(3), 479–485 (2014). doi:10.2166/wst.2014.247

    Google Scholar 

  85. Chiumenti, A., Da Borso, F., Chiumenti, R., Teri, F., Segantin, P.: Treatment of digestate from a co-digestion biogas plant by means of vacuum evaporation: tests for process optimization and environmental sustainability. Waste Manag. 33(6), 1339–1344 (2013). doi:10.1016/j.wasman.2013.02.023

    Google Scholar 

  86. Nielsen, S., Willoughby, N.: Sludge treatment and drying reed bed systems in denmark. Water Environ. J. 19(4), 296–305 (2005). doi:10.1111/j.1747-6593.2005.tb00566.x

    Google Scholar 

  87. Abdullahi, Y.A., Akunna, J.C., White, N.A., Hallett, P.D., Wheatley, R.: Investigating the effects of anaerobic and aerobic post-treatment on quality and stability of organic fraction of municipal solid waste as soil amendment. Bioresour. Technol. 99(18), 8631–8636 (2008). doi:10.1016/j.biortech.2008.04.027

    Google Scholar 

  88. Kaparaju, P.L.N., Rintala, J.A.: Thermophilic anaerobic digestion of industrial orange waste. Environ. Technol. 27(6), 623–633 (2006). doi:10.1080/09593332708618676

    Google Scholar 

  89. Tambone, F., Terruzzi, L., Scaglia, B., Adani, F.: Composting of the solid fraction of digestate derived from pig slurry: biological processes and compost properties. Waste Manag. 35, 55–61 (2015). doi:10.1016/j.wasman.2014.10.014

    Google Scholar 

  90. Torres-Climent, A., Martin-Mata, J., Marhuenda-Egea, F., Moral, R., Barber, X., Perez-Murcia, M.D., Paredes, C.: Composting of the solid phase of digestate from biogas production: optimization of the moisture, C/N ratio, and pH conditions. Commun. Soil Sci. Plant Anal. 46, 197–207 (2015). doi:10.1080/00103624.2014.988591

    Google Scholar 

  91. Maurer, C., Müller, J.: Ammonia (NH3) emissions during drying of untreated and dewatered biogas digestate in a hybrid waste-heat/solar dryer. Eng.Life Sci. 12(3), 321–326 (2012). doi:10.1002/elsc.201100113

    Google Scholar 

  92. Pantelopoulos, A., Magid, J., Jensen, L.S.: Thermal drying of the solid fraction from biogas digestate: Effects of acidification, temperature and ventilation on nitrogen content. Waste Manag. 48, 218–226 (2016). doi:10.1016/j.wasman.2015.10.008

    Google Scholar 

  93. Kratzeisen, M., Starcevic, N., Martinov, M., Maurer, C., Müller, J.: Applicability of biogas digestate as solid fuel. Fuel. 89(9), 2544–2548 (2010). doi:10.1016/j.fuel.2010.02.008

    Google Scholar 

  94. Monlau, F., Sambusiti, C., Antoniou, N., Barakat, A., Zabaniotou, A.: A new concept for enhancing energy recovery from agricultural residues by coupling anaerobic digestion and pyrolysis process. Appl. Energy. 148, 32–38 (2015). doi:10.1016/j.apenergy.2015.03.024

    Google Scholar 

  95. Opatokun, S.A., Strezov, V., Kan, T.: Product based evaluation of pyrolysis of food waste and its digestate. Energy. 92, 349–354 (2015). doi:10.1016/j.energy.2015.02.098

    Google Scholar 

  96. Drosg, B., Wirthensohn, T., Konrad, G., Hornbachner, D., Resch, C., Wager, F., Loderer, C., Waltenberger, R., Kirchmayr, R., Braun, R.: Comparing centralised and decentralised anaerobic digestion of stillage from a large-scale bioethanol plant to animal feed production. Water Sci. Technol. 58(7), 1483–1489 (2008). doi:10.2166/wst.2008.515

    Google Scholar 

  97. Gerardo, M.L., Aljohani, N.H.M., Oatley-Radcliffe, D.L., Lovitt, R.W.: Moving towards sustainable resources: recovery and fractionation of nutrients from dairy manure digestate using membranes. Water Res. 80, 80–89 (2015). doi:10.1016/j.watres.2015.05.016

    Google Scholar 

  98. Minardi, E.R., Chakraborty, S., Calabro, V., Curcio, S., Drioli, E.: Membrane applications for biogas production and purification processes: an overview on a smart alternative for process intensification. Rsc Adv. 5(19), 14156–14186 (2015). doi:10.1039/c4ra11819g

    Google Scholar 

  99. Vaneeckhaute, C., Meers, E., Michels, E., Christiaens, P., Tack, F.M.G.: Fate of macronutrients in water treatment of digestate using vibrating reversed osmosis. Water Air Soil Pollut. 223(4), 1593–1603 (2012). doi:10.1007/s11270-011-0967-6

    Google Scholar 

  100. Li, X., Guo, J.B., Dong, R.J., Ahring, B.K., Zhang, W.Q.: Properties of plant nutrient: comparison of two nutrient recovery techniques using liquid fraction of digestate from anaerobic digester treating pig manure. Sci. Total Environ. 544, 774–781 (2016). doi:10.1016/j.scitotenv.2015.11.172

    Google Scholar 

  101. Estevez, M.M., Linjordet, R., Horn, S.J., Morken, J.: Improving nutrient fixation and dry matter content of an ammonium-rich anaerobic digestion effluent by struvite formation and clay adsorption. Water Sci. Technol. 70(2), 337–344 (2014). doi:10.2166/wst.2014.236

    Google Scholar 

  102. Estevez, M.M., Sapci, Z., Linjordet, R., Morken, J.: Incorporation of fish by-product into the semi-continuous anaerobic co-digestion of pre-treated lignocellulose and cow manure, with recovery of digestate’s nutrients. Renew. Energy. 66, 550–558 (2014). doi:10.1016/j.renene.2014.01.001

    Google Scholar 

  103. Huang, W.W., Huang, W.L., Yuan, T., Zhao, Z.W., Cai, W., Zhang, Z.Y., Lei, Z.F., Feng, C.P.: Volatile fatty acids (VFAs) production from swine manure through short-term dry anaerobic digestion and its separation from nitrogen and phosphorus resources in the digestate. Water Res. 90, 344–353 (2016). doi:10.1016/j.watres.2015.12.044

    Google Scholar 

  104. Liu, L., Pang, C.L., Wu, S.B., Dong, R.J.: Optimization and evaluation of an air-recirculated stripping for ammonia removal from the anaerobic digestate of pig manure. Process Saf Environ. 94, 350–357 (2015). doi:10.1016/j.psep.2014.08.006

    Google Scholar 

  105. Tao, W.D., Ukwuani, A.T.: Coupling thermal stripping and acid absorption for ammonia recovery from dairy manure: ammonia volatilization kinetics and effects of temperature, pH and dissolved solids content. Chem. Eng. J. 280, 188–196 (2015). doi:10.1016/j.cej.2015.05.119

    Google Scholar 

  106. Xia, A., Murphy, J.D.: Microalgal cultivation in treating liquid digestate from biogas systems. Trends Biotechnol. 34(4), 264–275 (2016)

    Google Scholar 

  107. Wu, S.B., Lei, M., Lu, Q.M., Guo, L.C., Dong, R.J.: Treatment of pig manure liquid digestate in horizontal flow constructed wetlands: effect of aeration. Eng. Life Sci. 16(3), 263–271 (2016). doi:10.1002/elsc.201500030

    Google Scholar 

  108. Quan, X.C., Zhang, M.C., Lawlor, P.G., Yang, Z.F., Zhan, X.M.: Nitrous oxide emission and nutrient removal in aerobic granular sludge sequencing batch reactors. Water Res. 46(16), 4981–4990 (2012). doi:10.1016/j.watres.2012.06.031

    Google Scholar 

  109. Zhang, M.C., Lawlor, P.G., Wu, G.X., Lynch, B., Zhan, X.M.: Partial nitrification and nutrient removal in intermittently aerated sequencing batch reactors treating separated digestate liquid after anaerobic digestion of pig manure. Bioproc. Biosyst Eng. 34(9), 1049–1056 (2011). doi:10.1007/s00449-011-0556-5

    Google Scholar 

  110. Cooper, P.: A review of the design and performance of vertical-flow and hybrid reed bed treatment systems. Water Sci. Technol. 40(3), 1–9 (1999). doi:10.1016/S0273-1223(99)00414-X

    Google Scholar 

  111. Uggetti, E., Ferrer, I., Llorens, E., García, J.: Sludge treatment wetlands: a review on the state of the art. Bioresour. Technol. 101(9), 2905–2912 (2010). doi:10.1016/j.biortech.2009.11.102

    Google Scholar 

  112. Erik Nordell, S.N.P.: Reduction of methane emissions from bio-fertilizer by aeration Paper presented at the 6th International Symposium on Energy from Biomass and Waste, Venice, Italy

  113. Hossain, A.K., Serrano, C., Brammer, J.B., Omran, A., Ahmed, F., Smith, D.I., Davies, P.A.: Combustion of fuel blends containing digestate pyrolysis oil in a multi-cylinder compression ignition engine. Fuel. 171, 18–28 (2016). doi:10.1016/j.fuel.2015.12.012

    Google Scholar 

  114. Lü, F., Luo, C., Shao, L., He, P.: Biochar alleviates combined stress of ammonium and acids by firstly enriching Methanosaeta and then Methanosarcina. Water Res. 90, 34–43 (2016). doi:10.1016/j.watres.2015.12.029

    Google Scholar 

  115. Luo, C., Lü, F., Shao, L., He, P.: Application of eco-compatible biochar in anaerobic digestion to relieve acid stress and promote the selective colonization of functional microbes. Water Res. 68, 710–718 (2015). doi:10.1016/j.watres.2014.10.052

    Google Scholar 

  116. Mumme, J., Srocke, F., Heeg, K., Werner, M.: Use of biochars in anaerobic digestion. Bioresour. Technol. 164, 189–197 (2014). doi:10.1016/j.biortech.2014.05.008

    Google Scholar 

  117. Malamis, S., Katsou, E., Di Fabio, S., Bolzonella, D., Fatone, F.: Biological nutrients removal from the supernatant originating from the anaerobic digestion of the organic fraction of municipal solid waste. Crit. Rev. Biotechnol. 34(3), 244–257 (2014). doi:10.3109/07388551.2013.791246

    Google Scholar 

  118. Wang, L., Li, Y., Chen, P., Min, M., Chen, Y., Zhu, J., Ruan, R.R.: Anaerobic digested dairy manure as a nutrient supplement for cultivation of oil-rich green microalgae Chlorella sp. Bioresour. Technol. 101(8), 2623–2628 (2010). doi:10.1016/j.biortech.2009.10.062

    Google Scholar 

  119. Croft, M.T., Lawrence, A.D., Raux-Deery, E., Warren, M.J., Smith, A.G.: Algae acquire vitamin B12 through a symbiotic relationship with bacteria. Nature. 438(7064), 90–93 (2005). doi:10.1038/nature04056

    Google Scholar 

  120. Botheju, D., Svalheim, O., Bakke, R.: Digestate nitrification for nutrient recovery. Open Waste Manag. J. 3(1) (2010). doi:10.2174/1876400201003010001

  121. Morillo, E., Villaverde, J.: Advanced technologies for the remediation of pesticide-contaminated soils. Sci. Total Environ. (2017). doi:10.1016/j.scitotenv.2017.02.020

    Google Scholar 

  122. Piippo, S., Juntunen, A., Kurppa, S., Pongrácz, E.: The use of bio-waste to revegetate eroded land areas in Ylläs, Northern Finland: toward a zero waste perspective of tourism in the Finnish Lapland. Resour. Conserv. Recycl. 93, 9–22 (2014). doi:10.1016/j.resconrec.2014.09.015

    Google Scholar 

  123. Plana, P.V., Noche, B.: A review of the current digestate distribution models: storage and transport. Paper presented at the 8th International Conference on Waste Management and the Environment, Valencia, Spain. https://www.witpress.com/Secure/elibrary/papers/WM16/WM16031FU1.pdf (2016). Accessed 08 Aug 2017

  124. Council, W.e. World energy resources 2016. https://www.worldenergy.org/wp-content/uploads/2016/10/World-Energy-Resources_SummaryReport_2016.pdf (2016). Accessed 08 Aug 2017

  125. Delft, C.: Biomass and waste pyrolysis-evolution to high-quality marketable fuels. http://www.ce.nl/art/uploads/file/Presentaties/2016/CE_Delft_3I96_presentationDJ.pdf (2016). Accessed 08 Aug 2017

  126. Dahlin, J., Herbes, C., Nelles, M.: Biogas digestate marketing: qualitative insights into the supply side. Resour. Conserv. Recycl. 104, 152–161 (2015). doi:10.1016/j.resconrec.2015.08.013

    Google Scholar 

  127. Hogg, D.: Costs for municipal waste management in the EU. http://ec.europa.eu/environment/waste/studies/pdf/eucostwaste.pdf (2002). Accessed 08 Aug 2017

  128. Li, H., Lindmark, J., Nordlander, E., Thorin, E., Dahlquist, E., Zhao, L.: Using the solid digestate from a wet anaerobic digestion process as an energy resource. Energy Technol. 1(1), 94–101 (2013). doi:10.1002/ente.201200021

    Google Scholar 

  129. Sambusiti, C., Monlau, F., Ficara, E., Carrère, H., Malpei, F. : A comparison of different pre-treatments to increase methane production from two agricultural substrates. Appl. Energy. 104, 62–70 (2013). doi:10.1016/j.apenergy.2012.10.060

    Google Scholar 

  130. Visvanathan, C.: Evaluation of anaerobic digestate for greenhouse gas emissions at various stages of its management. Int. Biodeterior. Biodegrad. 95, 167–175 (2014). doi:10.1016/j.ibiod.2014.06.020

    Google Scholar 

  131. Hoffman, V., Marmsjö, A.: Combustion of sludge in Fortum’s plants with possible phosphorus recycling. http://www.diva-portal.org/smash/get/diva2:726940/FULLTEXT01.pdf (2014). Accessed 08 Aug 2017

  132. WRAP: Digestate distribution models. In., vol. OMK006-001. http://www.wrap.org.uk/sites/files/wrap/Digestate%20distribution%20models%20report.pdf (2013). Accessed 08 Aug 2017

  133. Møller, J., Boldrin, A., Christensen, T.H.: Anaerobic digestion and digestate use: accounting of greenhouse gases and global warming contribution. Waste Manag. Res. 27(8), 813–824 (2009). doi:10.1177/0734242X09344876

    Google Scholar 

  134. Matsuda, T., Yano, J., Hirai, Y., Sakai, S.-i.: Life-cycle greenhouse gas inventory analysis of household waste management and food waste reduction activities in Kyoto. Japan. Int. J. Life Cycle Assess. 17(6), 743–752 (2012). doi:10.1007/s11367-012-0400-4

    Google Scholar 

  135. Michele, P., Giuliana, D.I., Carlo, M., Sergio, S., Fabrizio, A.: Optimization of solid state anaerobic digestion of the OFMSW by digestate recirculation: a new approach. Waste Manag. 35, 111–118 (2015). doi:10.1016/j.wasman.2014.09.009

    Google Scholar 

  136. Wu, D., Lü, F., Shao, L., He, P.: Effect of cycle digestion time and solid-liquid separation on digestate recirculated one-stage dry anaerobic digestion: use of intact polar lipid analysis for microbes monitoring to enhance process evaluation. Renew. Energy. 103, 38–48 (2017). doi:10.1016/j.renene.2016.11.016

    Google Scholar 

  137. Nabel, M., Barbosa, D.B.P., Horsch, D., Jablonowski, N.D.: Energy crop (Sida Hermaphrodita) fertilization using digestate under marginal soil conditions: a dose-response experiment. Energy Procedia. 59, 127–133 (2014). doi:10.1016/j.egypro.2014.10.358

    Google Scholar 

  138. Nordberg, Å., Edström, M.: Co-digestion of energy crops and the source-sorted organic fraction of municipal solid waste. Water Sci. Technol. 52(1–2), 217–222 (2005)

    Google Scholar 

  139. Stoknes, K., Scholwin, F., Krzesiński, W., Wojciechowska, E., Jasińska, A.: Efficiency of a novel “Food to waste to food” system including anaerobic digestion of food waste and cultivation of vegetables on digestate in a bubble-insulated greenhouse. Waste Manag. 56, 466–476 (2016). doi:10.1016/j.wasman.2016.06.027

    Google Scholar 

  140. Mouat, A., Mistry, A.B., P., Webb, J.: Digestate market development in Scotland. vol. OPR080-801. Zero waste Scotland Stirling, UK. http://www.wrap.org.uk/sites/files/wrap/Zero_Waste_Scotland_Digestate_Market_Development.pdf (2010). Accessed 08 Aug 2017

  141. Adam Baddeley, A.B., Ian Cressford, Eunomia Matthew Smyth, Aqua Enviro. Assessing the costs and benefits for production and beneficial application of anaerobic digestate to agricultural land in Wales. In., vol. OMK007-203. WRAP, Cardiff, UK. http://www.wrapcymru.org.uk/sites/files/wrap/Assessing%20the%20Costs%20and%20Benefits%20for%20Production%20and%20Beneficial%20Application%20of%20Anaerobic%20Digestate%20to%20Agricultural%20Land%20in%20Wales%202014.pdf (2014). Accessed 08 Aug 2017

  142. Uggetti, E., Sialve, B., Trably, E., Steyer, J.-P.: Integrating microalgae production with anaerobic digestion: a biorefinery approach. Biofuels, Bioprod. Biorefin. 8(4), 516–529 (2014). doi:10.1002/bbb.1469

    Google Scholar 

Download references

Acknowledgements

Wei Peng gratefully acknowledges the financial support of the China Scholarship Council (CSC) (No. 201506260166). The authors would like to thank Mr. Mubashir Saleem and Mrs. Stephanie C. Bolyard for polishing language of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Peng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, W., Pivato, A. Sustainable Management of Digestate from the Organic Fraction of Municipal Solid Waste and Food Waste Under the Concepts of Back to Earth Alternatives and Circular Economy. Waste Biomass Valor 10, 465–481 (2019). https://doi.org/10.1007/s12649-017-0071-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-017-0071-2

Keywords

Navigation