Skip to main content

Advertisement

Log in

Experimental Investigations of Performance and Emissions Characteristics of Kusum (Schleichera Oleosa) Biodiesel in a Multi-Cylinder Transportation Diesel Engine

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

In the present work, an underutilized and promising feedstock, Kusum seed oil (KSO) is converted into biodiesel through transesterification process. The physico-chemical properties of Kusum biodiesel (Kusum oilmethyl ester; KOME), measured via standard methods, were well within the ASTM D6751/EN14214 standard limits. After that, experiments were conducted using various blends (B5, B10, B15, and B20) of methyl ester of KSO with diesel in a multi cylinder diesel engine at varying engine speeds, ranging from 1000 to 4000 rpm under full load conditions. Engine performance (brake power, brake specific fuel consumption, brake specific energy consumption and brake thermal efficiency) and emissions (CO, HC, NOx and smoke opacity) were measured to analyse the behavior of the diesel engine running on biodiesel. The test results showed that with the increase of biodiesel in the blends CO, HC and smoke opacity reduces significantly while fuel consumption and NOx emission of biodiesel increases slightly compared with diesel. Brake specific energy consumption decreases and thermal efficiency of engine slightly increases when operating on 10 % biodiesel than that operating on diesel. It may be concluded from the experimental investigations that Kusum biodiesel is a potential alternative to diesel fuel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

KOME:

Kusum oil methyl ester

B100:

Neat biodiesel

B0:

Neat diesel

B05:

Blend of 05 % KOME and 95 % diesel

B10:

Blend of 10 % KOME and 90 % diesel

B15:

Blend of 15 % KOME and 85 % diesel

B20:

Blend of 20 % KOME and 80 % diesel

CO:

Carbon monoxide

UHC:

Unburnt hydrocarbons

NOx :

Oxides of nitrogen

BTE:

Brake thermal efficiency

BSFC:

Brake specific fuel consumption

BSEC:

Brake specific Energy consumption

Ppm:

Parts per million

cSt:

Centi-Stoke

kWh:

Kilo-watt-hour

RPM:

Rotations per minute

References

  1. Agarwal, D., Agarwal, A.K.: Performance and emissions characteristics of Jatropha oil (preheated and blends) in a direct injection compression ignition engine. Appl. Therm. Eng. 27, 2314–2323 (2007)

    Article  Google Scholar 

  2. Aghbashlo, M., Tabatabaei, M., Mohammadi, P., Mirzajanzadeh, M., Ardjmand, M., Rashidi, A.: Effect of an emission reducing soluble hybrid nanocatalyst in diesel/biodiesel blends on exergetic performance of a DI diesel engine. Renew. Energy 93, 353–368 (2016)

    Article  Google Scholar 

  3. Aghbashlo, M., Tabatabaei, M., Mohammadi, P., Pourvosoughi, N., Nikbakht, A.M., Goli, S.A.H.: Improving exergetic and sustainability parameters of a DI diesel engine using polymer waste dissolved in biodiesel as a novel diesel additive. Energy Convers. Manag. 105, 328–337 (2015)

    Article  Google Scholar 

  4. Aladetuyi, A., Olatunji, G.A., Ogunniyi, D.S., Odetoye, T.E.: Production and characterization of biodiesel using palm kernel oil, fresh and recovered from spent bleaching earth. Biofuel Res. J. 4, 134–138 (2014)

    Article  Google Scholar 

  5. Atabani, A.E., Silitonga, A.S.: Non-edible vegetable oils: a critical evaluation of oil extraction fatty acid compositions, biodiesel production, characteristics, engine performance and emissions production. Renew. Sustain. Energy Rev. 18, 211–245 (2013)

    Article  Google Scholar 

  6. Atabani, A.E., Mofijur, M., Masjuki, H.H., Badruddin, I.A., Chong, W.T., Cheng, S.F., Gouk, S.W.: A study of biodiesel production and characterization of Manketti (Ricinodendron rautonemii) methyl ester and its blends as a potential biodiesel. Biofuel Res. J. 4, 139–146 (2014)

    Article  Google Scholar 

  7. Bhale, P.V., Deshpande, N.V., Thombre, S.B.: Improving the low temperature properties of biodiesel fuel. Renew. Energy 34, 794–800 (2009)

    Article  Google Scholar 

  8. Bhatia, H., Kaur, J., Nandi, S., Gurnani, V., Chowdhury, A., Reddy, P.H., et al.: A review on Schleichera oleosa: pharmacological and environmental aspects. J. Pharm. Res. 6(1), 224–229 (2013)

    Google Scholar 

  9. Carraretto, C., Macor, A., Mirandola, A., Stoppato, A., Tonon, S.: Biodiesel as alternative fuel: experimental analysis and energetic evaluations. Energy 29, 2195–2211 (2004)

    Article  Google Scholar 

  10. Chattopadhyay, S., Sen, R.: Fuel properties, engine performance and environmental benefits of biodiesel produced by a green process. Appl. Energy 105, 319–326 (2013)

    Article  Google Scholar 

  11. Cheikh, K., Sary, A., Khaled, L., Abdelkrim, L., Mohand, T.: Experimental assessment of performance and emissions maps for biodiesel fueled compression ignition engine. Appl. Energy 161, 320–329 (2016)

    Article  Google Scholar 

  12. Chuah, L.F., Rashid, A., Aziz, A., Yusu, S., Bokhari, A., Jarom, J., Abdullah, K.Z.: Performance and emission of diesel engine fuelled by waste cooking oil methyl ester derived from palm oil using hydrodynamic cavitation. Clean Technol. Environ. Policy 17(8), 2229–2241 (2015)

    Article  Google Scholar 

  13. Dhar, A., Agarwal, A.K.: Performance, emissions and combustion characteristics of Karanja biodiesel in a transportation engine. Fuel 119, 70–80 (2014)

    Article  Google Scholar 

  14. Dhar, A., Kevin, R., Agarwal, A.K.: Production of biodiesel from high-FFA neem oil and its performance, emission and combustion characterization in a single cylinder DICI engine. Fuel Process. Technol. 97, 118–129 (2012)

    Article  Google Scholar 

  15. Gandhi, M., Ramu, N., Raj, S.B.: Methyl ester production from Schlichera oleosa. Int. J. Pharm. Sci. Res. 2(5), 1244–1250 (2011)

    Google Scholar 

  16. Giakoumis, E.G., Rakopoulos, C.D., Dimaratos, A.M., Rakopoulos, D.C.: Exhaust emissions of diesel engines operating under transient conditions with biodiesel fuel blends. Prog. Energy Combust. 38, 691–715 (2012)

    Article  Google Scholar 

  17. Gumus, M., Kasifoglu, S.: Performance and emission evaluation of a compression ignition engine using a biodiesel (apricot seed kernel oil methyl ester) and its blends with diesel fuel. Biomass Bioenergy 34, 134–139 (2010)

    Article  Google Scholar 

  18. Hirkude, J.B., Padalkar, A.S.: Performance optimization of CI engine fuelled with waste fried oil methyl ester-diesel blend using response surface methodology. Fuel 119, 266–273 (2014)

    Article  Google Scholar 

  19. Jhansi, P., Kalpana, T.P., Ramanujan, C.G.K.: Apidologie 25, 289–296 (1994)

    Article  Google Scholar 

  20. Karavalakis, G., Stournas, S., Bakeas, E.: Light vehicle regulated and unregulated emissions from different biodiesels. Sci. Total Environ. 407, 3338–3346 (2009)

    Article  Google Scholar 

  21. Labeckas, G., Slavinskas, S.: The effect of rapeseed oil methyl ester on direct injection diesel engine performance and exhaust emissions. Energy Convers. Manag. 47, 1954–1967 (2006)

    Article  Google Scholar 

  22. Lapuerta, M., Armas, O., Rodríguez-Fernández, J.: Effect of biodiesel fuels on diesel engine emissions. Prog. Energy Combust. Sci. 34, 198–223 (2008)

    Article  Google Scholar 

  23. Lin, C.Y., Lin, H.A.: Diesel engine performance and emission characteristics of biodieselproduced by the peroxidation process. Fuel 85, 298–305 (2006)

    Article  Google Scholar 

  24. Maleki, E., Aroua, M.K., Sulaiman, N.M.N.: Improved yield of solvent free enzymatic methanolysis of palm and jatropha oils blended with castor oil. Appl. Energy 104, 905–909 (2013)

    Article  Google Scholar 

  25. Mofijur, M., Masjuki, H.H., Kalam, M.A., Atabani, A.E.: Evaluation of biodiesel blending, engine performance and emissions characteristics of Jatropha curcas methyl ester: Malaysian perspective. Energy 55, 879–887 (2013)

    Article  Google Scholar 

  26. Mohadesi, M., Hojabri, Z., Moradi, G.: Biodiesel production using alkali earth metal oxides catalysts synthesized by sol-gel method. Biofuel Res. J. 1, 30–33 (2014)

    Article  Google Scholar 

  27. Monyem, A., Van Gerpen, J.H.: The effect of biodiesel oxidation on engine performance andemissions. Biomass Bioenergy 20, 317–325 (2001)

    Article  Google Scholar 

  28. Moradi, G.R., Mohadesi, M., Ghanbari, M., Moradi, M.J., Hosseini, Sh., Davoodbeygi, Y.: Kinetic comparison of two basic heterogenous catalysts obtained from sustainable resources for transesterification of waste cooking oil. Biofuel Res. J. 6, 236–241 (2015)

    Article  Google Scholar 

  29. Nabi, N., Mustafizur, R., Shamim, A.: Biodiesel from cotton seed oil and its effect on engine performance and exhaust emissions. Appl. Therm. Eng. 29, 2265–2270 (2009)

    Article  Google Scholar 

  30. Ong, H.C., Masjuki, H.H., Mahlia, T.M.I., Silitonga, A.S., Chong, W.T., Leong, K.Y.: Optimization of biodiesel production and engine performance from high free fatty acid Calophyllum inophyllum oil in CI diesel engine. Energy Convers. Manag. 81, 30–40 (2014)

    Article  Google Scholar 

  31. Pal, A., Verma, A., Kachhwaha, S.S., Maji, S.: Biodiesel production through hydrodynamic cavitation and performance testing. Renew. Energy 35, 619–624 (2010)

    Article  Google Scholar 

  32. Palanuvej, C., Vipunngeun, N.: Fatty acid constituents of Schleichera oleosa (Lour) Oken seed oil. J Health Res. 22, 203–212 (2008)

    Google Scholar 

  33. Pali, H., Kumar, N., and Mishra, C. “Some experimental studies on combustion, emission and performance characteristics of an agricultural diesel engine fueled with blends of Kusum oil methyl ester and diesel,” SAE Technical Paper 2014-01-1952, 2014, doi:10.4271/2014-01-1952

  34. Panwar, N.L., Shrirame, H.Y., Rathore, N.S., Jindal, S., Kurchania, A.K.: Performance evaluation of a diesel engine fueled with methyl ester of castor seed oil. Appl. Therm. Eng. 30, 245–249 (2010)

    Article  Google Scholar 

  35. Puhan, S., Vedaraman, N., Sankaranarayanan, G., Ram, B.V.B.: Performance and emission study of Mahua oil (madhuca indica oil) ethyl ester in a 4-stroke natural aspirated direct injection diesel engine. Renew. Energy 30, 1269–1278 (2005)

    Article  Google Scholar 

  36. Raheman, H., Ghadge, S.V.: Performance of compression ignition engine with mahua (Madhuca indica) biodiesel. Fuel 86, 2568–2573 (2007)

    Article  Google Scholar 

  37. Rao, G.L.N., Prasad, B.D., Sampath, S., Rajagopal, K.: Combustion analysis of diesel engine fueled with jatropha oil methyl ester diesel blends. Int. J. Green Energy 4(6), 645–658 (2009)

    Google Scholar 

  38. Sahoo, P.K., Das, L.M., Babu, M.K.G., Naik, S.N.: Biodiesel development from high acid value polanga seed oil and performance evaluation in a CI engine. Fuel 86, 448–454 (2007)

    Article  Google Scholar 

  39. Sharanappa, G., Murthy, C.H.S., Reddy, R.P.: 6BTA 5.9 G2-1 Cummins engine performance and emission tests using methyl ester mahua (Madhuca indica) oil/diesel blends. Renew. Energy 34, 2172–2177 (2009)

    Article  Google Scholar 

  40. Silitonga, A.S., Masjuki, H.H., Mahlia, T.M.I., Ong, H.C., Kusumo, F., Aditiya, H.B., Ghazali, N.N.N.: Schleichera oleosa L oil as feedstock for biodiesel production. Fuel 156, 63–70 (2015)

    Article  Google Scholar 

  41. Sudrajat, R., Pawoko, E., Hendra, D., Setiawan, D.: Biodiesel manufacturing from kesambi seed. J. For. Prod. Res. 28(4), 332–3357 (2010)

    Google Scholar 

  42. Sureshkumar, K., Velraj, R., Ganesan, R.: Performance and exhaust emission characteristics of a CI engine fueled with Pongamia pinnata methyl ester (PPME) and its blends with diesel. Renew. Energy 33, 2294–2302 (2008)

    Article  Google Scholar 

  43. Usta, N.: An experimental study on performance and exhaust emissions of a diesel engine fuelled with tobacco seed oil methyl ester. Energy Convers. Manag. 46, 2373–2386 (2005)

    Article  Google Scholar 

  44. Utlu, Z., Kocak, M.S.: The effect of biodiesel fuel obtained from waste frying oil on direct injection diesel engine performance and exhaust emissions. Renew. Energy 33, 1936–1941 (2008)

    Article  Google Scholar 

  45. Xue, J., Grift, T.E., Hansen, A.C.: Effect of biodiesel on engine performances and emissions. Renew. Sustain. Energy Rev. 15, 1098–1116 (2011)

    Article  Google Scholar 

  46. Yamane, K., Ueta, A., Shimamoto, Y.: Influence of physical and chemical properties of biodiesel fuels on injection, combustin and exhaust emission characteristics in a direct injection compression ignition engine. Int. J. Engine Res. 2, 249–261 (2001)

    Article  Google Scholar 

  47. Yan, Y., Li, X., Wang, G., Gui, X., Li, G., Su, F.: Biotechnological preparation of biodiesel and its high-valued derivatives: a review. Appl. Energy 113, 1614–1631 (2014)

    Article  Google Scholar 

  48. Zhang, X., Gao, G., Li, L., Wu, Z., Hu, Z., Deng, J.: Characteristics of combustion and emissions in a DI engine fueled with biodiesel blends from soybean oil. SAE Technical Paper 1, 1832–1835 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashok Kumar Yadav.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yadav, A.K., Khan, M.E., Pal, A. et al. Experimental Investigations of Performance and Emissions Characteristics of Kusum (Schleichera Oleosa) Biodiesel in a Multi-Cylinder Transportation Diesel Engine. Waste Biomass Valor 8, 1331–1341 (2017). https://doi.org/10.1007/s12649-016-9658-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-016-9658-2

Keywords

Navigation