Skip to main content
Log in

Alkaline Hydrolysis of Chromium Tanned Leather Scrap Fibers and Anaerobic Biodegradation of the Products

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Chromium tanned leather wastes fibers are difficult to manage by chemical and biological processes due to the strong bonds established between collagen and chromium. Therefore, it is of great interest to develop treatments that disrupt recalcitrant bonds and may open new perspectives to materials valorization. A temperature and pressure-assisted alkaline hydrolysis method has been studied. The effects of sodium hydroxide concentration, temperature, holding time and leather fibers to solution ratio on organic matrix destruction, chromium dissolution and anaerobic biodegradability of hydrolyzates obtained are reported. The more suitable conditions found are leather fibers treatment at 423 K for 1.5 h with NaOH 4 mol/L solution and solid to liquid (S/L) ratio (w/w) of 0.15 or 0.2. Under these conditions, more than 98 % of the leather and 85 % of chromium were dissolved. The hydrolyzates may be used in the leather process and show anaerobic biodegradability mostly in the range of 20–30 %. This work establishes an alternative route of treatment that promotes fast destruction of chromium tanned leather scrap, and may avoid its landfilling, contributing to recover part of resources contained in leather waste.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kolomaznik, K., Mladek, M., Langmaier, F., Shelly, D.C., Taylor, M.M.: Closed loop for chromium in tannery operation. J. Am. Leather Chem. Assoc. 98, 487–490 (2003)

    Google Scholar 

  2. Covington, D., Paul, G., Yagoub, S.: Biodegradazione dei residui di cuoio. Cuoio Pelli Materie Concianti 79, 187–195 (2003)

    Google Scholar 

  3. Ferreira, M.J.P.: Contributions to improve chromium tanned leather wastes management. PhD thesis, Faculdade de Engenharia da Universidade do Porto, Portugal (2011)

  4. Taylor, M.M., Diefendorf, E.J., Thompson, C.J., Brown, E.M., Marner, W.N.: Extraction and characterization of “chrome-free” protein from chromium-containing collagenous waste generated in the leather industry, vol 75, Chapter 12, pp. 171–187. Polymer from Agricultural Coproducts; ACS Symposium Series; American Chemical Society (1994)

  5. Cabeza, L.F., Taylor, M.M., Brown, E.M., Marmer, W.N.: Isolation of protein products from chromium-containing leather waste using two consecutive enzymes and purification of final chromium product: pilot plant studies. J. Soc. Leather Technol. Chem. 83, 14–19 (1999)

    Google Scholar 

  6. Kolomaznik, K., Mládek, W.N., Langmaier, F., Taylor, M.M., Diefendorf, E.J., Marmer, W.N., Brown, E.M., Ribula, L.: CR Patent 280 655 (1996)

  7. Kolomaznik, K., Mládek, M., Langmaier, F., Janácová, D., Taylor, M.M.: Experience in industrial practice of enzymatic dechromation of chrome shavings. J. Am. Leather Chem. Assoc. 94, 55–63 (2000)

    Google Scholar 

  8. Cantera, C.S., Greco, C.A., De Gusti, M., Bereciartua, P.: Dechroming of shavings. Part II: enzymic alkaline treatment. Study of variables. Tecnologia del Cuero. 5, 35–40 (1994)

    Google Scholar 

  9. Romero, S., López-Satín, J., Valero, F., Cot, J.: Estudios preliminares sobre la recuperación de colágeno y derivados mediante tratamiento enzimático de residuos sólidos de la industria de curtidos. Boletin Técnico AQUEIC 47, 10–17 (1996)

    Google Scholar 

  10. Chen, W., Gu, H., Qin, T., Shi, B.: Hydrolysis of chrome shavings with neutral protease. Zhongguo Pige 30, 2–5 (2001)

    Google Scholar 

  11. Zhang, M., Wang, K.: Collagen enzymic preparation from leather solid waste. China Patent CN 1335405 (2002)

  12. Crispim, A., Mota, M.: Leather shavings treatment—an enzymatic approach. J. Soc. Leather Technol. Chem. 87, 203–207 (2003)

    Google Scholar 

  13. Tumina, M.A., Mironova, T.F., Makarov-Zemlyanskii, Y.Y.: Russian Patent RU 2249047 C2 20030404 AN 2005:266794. Field: biotechnology. Abstr. J. Am. Leather Chem. Assoc. 100, 206 (2005)

    Google Scholar 

  14. Tahiri, S., Albizane, A., Abargues, M.R., Guardia, M.: Recovery of proteinaceous materials from tanned solid wastes. Yields and characterization of isolated products. J. Solid Waste Technol. Manag. 32, 138–148 (2006)

    Google Scholar 

  15. Gaidau, C., Ghida, M., Filpescu, L., Stepan, E., Lacatus, V., Popescu, M.: Advanced materials obtained from leather by-products. In: CEEX 2007 conference, Brasov, Romenia, October 24–26 (2007)

  16. Guterres, M., Dettmer, A., Amaral, L.A., Souza, F.R., Sousa, M.F.: Applications of biotechnology in leather. In: XXX international union of Leather Technologists and Chemists Congress, Beijing, China, October 11–14 (2009)

  17. Changdao, M., Wei, L., Mingrang, Z., Qingshi, Z.: Towards zero discharge of chromium-containing leather waste through improved alkali hydrolysis. Waste Manag. 23, 35–843 (2003)

    Google Scholar 

  18. Tahiri, S., Bouhria, M., Albizane, A.: Extraction of proteins from chrome shavings with sodium hydroxide and reuse of chromium in the tanning process. J. Am. Leather Chem. Assoc. 99, 16–25 (2001)

    Google Scholar 

  19. Malek, A., Hachemi, M., Didier, V.: New approach of depollution of solid chromium leather waste by the use of organic chelates: economical and environmental impacts. J. Hazard. Mater. 170, 156–162 (2009)

    Article  Google Scholar 

  20. Basells, S., Adzet, J.M., Paul, R., Gonzalez, M., Castell, J.C.: Obtención enzimatica de hidrolizado de colágeneo y aplicación en la mejora del proceso de blanqueo y tintura del cuero ovino al cromo. Boletín Técnico AQUEIC 4, 145–151 (2010)

    Google Scholar 

  21. Matyasovsky, J., Sedliacik, J., Jurkovic, P., Duchovic, P.: De-choming of chromium shavings without oxidation to hazardous Cr6+. J. Am. Leather Chem. Assoc. 105, 8–17 (2011)

    Google Scholar 

  22. Stockman, G.: Practical consideration of the production scale hydrolysis of blue shavings. J. Am. Leather Chem. Assoc. 91, 190–192 (1996)

    Google Scholar 

  23. Langerwerf, J.S.A.: Trivalent chromium, a recyclable raw material of the leather industry: a questionable genotoxic substance. J. Soc. Leather Technol. Chem. 69, 166–174 (1985)

    Google Scholar 

  24. Simoncini, A., Ummarino, G.: Possibilita reali di recupero dei sottoprodoti dell’industria conciaria. Cuoio Pelli Matieri Concianti 64, 528–539 (1988)

    Google Scholar 

  25. Kasparkova, V., Kolomaznik, K., Urketova, L., Sasek, V., Simek, L.: Characterization of low-molecular weight collagen hydrolyzates prepared by combination of enzymatic and acid hydrolysis. J. Am. Leather Chem. Assoc. 104, 46–51 (2009)

    Google Scholar 

  26. Lochner, H. Uffelmann, R.: German Patent. 1,254,813 (1967)

  27. Arima, J., Sumita, T., Harada, O., Kishibe, M., Kadota, K., Sugita, M., Yasui, M.: Development of technology for utilization of leather scraps. Hyogo-kenritsu Kogyo Gijutsu Senta Kenkyu Hokokusho 7, 101–104 (1997)

    Google Scholar 

  28. Sumita, S., Harada, O., Arima, S., Sumita, M.: Properties of hydrothermal treated products of chrome shavings. Hikaku Kagaku (Science) 44, 132–134 (1998)

    Google Scholar 

  29. Holloway, D. F.: Recovery and separation of nutritious protein hydrolyzate and chromium from chromed leather scrap. US Patent 4,100,154 (1978)

  30. Guardini, G.: Extraction of proteins and chromium sulphate from chromium-tanned skins wastes. US Patent 4,483,829 (1990)

  31. Minase, T., Minase, M., Yoneda, H., Nakayasu, T.: Leather rubbish method of processing and device. Japan Patent JP 2003340405 A2 20031202 (2003)

    Google Scholar 

  32. Janacova, D., Kolomaznik, K., Mokrejs, P., Vasek, V.: Optimization of enzymatic hydrolysis of leather waste. In: Proceedings of the 6th WSEAS international conference on applied informatics and communications, pp 345–348, Elounda, Greece, August 18–20, 2006

  33. Afsar, A., Aslan, A., Gulumser, G., Ocak, B.: A study on usability of collagen hydrolyzate along with oxazolidine in leather processing. Tekstil Konfesiyon 1, 37–40 (2010)

    Google Scholar 

  34. Tang, K., Zheng, X., Li, W., Shelly, D.C., Cassadonte Jr, D.J.: Modification of polyurethane finishing agent using collagen hydrolyzate from chrome shavings. J. Am. Leather Chem. Assoc. 105, 25–31 (2010)

    Google Scholar 

  35. Catalina, M., Attenburrow, G.E., Cot, J., Covington, A.D., Antunes, A.: Application of gelatine extracted from chrome shavings for the glazed finishing of leather. J. Am. Leather Chem. Assoc. 105, 138–144 (2010)

    Google Scholar 

  36. Gutterres, M., Silva, I.: Leather retanning with hydrolyzed protein. J. Am. Leather Chem. Assoc. 105, 195–202 (2010)

    Google Scholar 

  37. Liu, Q., Liu, L., Li, J., Zhang, D., Sun, J., Du, G., Chen, J.: Influence of microbial transglutinase modified gelatine-sodium caseinate, as a filler, on the subjective mechanical and structural properties of leather. JALCA 106, 200–208 (2011)

    Google Scholar 

  38. Chi, Y., Cui, M., Cui, X., Zhang, W., Liao, X., Shi, B.: Enzymatic hydrolysis of skin shavings for preparation of collagen hydrolysates with specified molecular weight distribution. J. Soc. Leather Technol. Chem. 96, 16–20 (2012)

    Google Scholar 

  39. Montemeri, E., Rizzi, G., Rizzi, A.: Hydrolysis of tannery wastes protein meal for animal feedstuffs a process and product evaluation. J. Chem. Technol. Biotechnol. 13, 97–104 (1995)

    Google Scholar 

  40. Langmaier, F., Mládek, M., Kolomazník, K., Mali, A.: Hydrolyzates of chromed waste as a raw material for the production of surfactants. Tenside, Surfactants, Deterg. 39, 47–51 (2002)

    Google Scholar 

  41. Shin, E.C., Lee, S.C., Kim, W.J., Heo, J.S.: Development of regenerated protein fibers from a collage-polyvinyl alcohol complex. J. Am. Leather Chem. Assoc. 102, 315–321 (2007)

    Google Scholar 

  42. Langmaier, F., Mokrejs, P., Mladek, M.: Heat-treated biodegradable films and foils of collagen hydrolyzate crosslinked with dialdehyde starch. J. Therm. Anal. Calorim. 102, 37–42 (2010)

    Article  Google Scholar 

  43. Sedliacik, J., Matyasovxky, J., Smdriakova, M., Sedliacova, M., Jurkovic, P.: Application of collagen colloid from chrome shavings for innovative polycondensation adhesives. J. Am. Leather Chem. Assoc. 106, 332–340 (2011)

    Google Scholar 

  44. Castiello, D., Chielli, E., Cinelli, E., Corti, A., D’Antone, S., Puccini, M., Salvadori, M., Vitolo, S.: Polyethylene-collagen hydrolyzate thermoplastic blends: a new reutilization route to transform a waste of leather industry into environmentally degrabale plastics. II Eurocongress IULTCS, Istambul, Turquey, 24–25 May, 2006

  45. Saha, N., Kresalkova, M., Saha, L., Kolomaznik, K.: The effect of anaerobic digestion on chrome sludge a by-product of tanned leather waste. J. Am. Leather Chem. Assoc. 98, 256–262 (2003)

    Google Scholar 

  46. Sreeram, K., Rao, J., Nair, B.: Chromium(III) pigments: use of leather wastes as alternative starting material. J. Am. Leather Chem. Assoc. 106, 219–226 (2011)

    Google Scholar 

  47. ISO 4045:2008. Leather—determination of pH

  48. EN 13137:2001. Characterization of waste. Determination of the total organic carbon (TOC) in waste sludge’s and sediments

  49. ISO 17075:2007. Leather—chemical tests—determination of chromium(VI) content

  50. ISO 17234-1:2010. Leather. Chemical tests. Determination of certain azo colorants in dyed leathers. Colorimetric method

  51. ISO 17070:2006. Leather. Chemical tests. Determination of the content of pentachlorophenol in leather

  52. ISO 4684:2006. Leather—chemical tests—determination of volatile matter

  53. ASTM D2868-96(2001) Standard test method for nitrogen content (Kjeldahl) and hide substance content of leather

  54. US EPA 3050B:1996. Acid digestion of sediments, sludge’s and soils

  55. ASTM D4653-87(2009) Standard test method for total chlorides in leather

  56. ASTM D4655-95(2006) Standard test method for sulfates in leather (total, neutral and combined acid)

  57. Standard methods for examination of water and wastewater, 1997, 20th edition 1998 and 21st edition 2003

  58. National Diagnostics, Life Science Catalogue (2005–2006)

  59. Taylor, M.M., Cabeza, F., DiMaio, L., Brown, E.M., Marmer, W.N., Carrió, R., Celma, P.J., Cot, J.: Processing of Leather waste: pilot scale studies on chrome shavings. Part I Isolation and characterization of protein products and separation of chrome cake. J. Am. Leather Chem. Assoc. 93, 61–82 (1998)

    Google Scholar 

  60. Taylor, M.M., Marmer, W.N., Brown, E.M.: Molecular weight distribution and functional properties of enzymatically modified commercial and experimental gelatins. J. Am. Leather Chem. Assoc. 99, 129–140 (2004)

    Google Scholar 

  61. Edman, P.: Preparation of phenylthiohydantoins from natural amino acids. Acta. Chem. Scand. 4, 277–282 (1950) and Edman, P., Begg, G.: A protein sequenator. Eur. J. Biochem. 1(1), 80–91 (1967)

    Google Scholar 

  62. Thermo Fisher Scientific Inc. USA. Instruction n. 26922, 0863.1. Available at www.thermo.com/pierce (2009)

  63. ISO 11734:1995 Water quality—evaluation of the “ultimate” anaerobic biodegradability of organic compounds in digested sludge—method by measurement of biogas production

  64. Sϋßmuth R., Doser, C., Lueders, T.: Determination of the biological biodegradability of organic substances under anaerobic conditions using the Oxitop® control measuring system. Application report 0600421e. Universitat Hohenheim, Germany (1999)

  65. Muñoz, J., Maldonado, M., Rangel, A.: Development of a tanning process based on using hydrolyzate material collected from leather scrap. J. Am. Leather Chem. Assoc. 97, 83–88 (2002)

    Google Scholar 

  66. Meyndt, R., Germann, H.: Relationships in the formation of hexavelant chromium [Cr(VI)]. World Leather 23, 14–17 (2011)

    Google Scholar 

  67. Palop, R.: Fatliquour influence on ageing and chrome VI formation. Part 1. Leather, 209, 22–23 (2007) and Part 2. Leather, 210, 49–51 (2008)

    Google Scholar 

  68. De Volder, N., Hallmanns, M.: annoying energy. II. Solar heating of dark leather. In: Proceedings of the XXIX international union of Leather Technologists and Chemists Societies Congress, Washington (2007)

  69. Bacardit, A., Cobos, M., Font, J., Ollé. L.,: Estudio del envejecimiento de la piel debido a la exposición directa a la intemperie. LederPiel, 84, 42–47 (2011)

  70. Ling, Z., Congzheng, Y., Hongmin, Y., Qiang, H.: Oxidation of Cr3+ to Cr6+ by hydroxyl radicals in leather. J. Soc. Leather Technol. Chem. 94, 156–160 (2010)

    Google Scholar 

  71. Niculescu, M., Bajenaru, S., Gaidau, C., Simion, D., Filipescu, L.: Extraction of the protein components as amino-acids hydrolysates from chrome leather wastes through hydrolytic processes. Revista de Chimie Bucuresti 6, 1–26 (2009)

    Google Scholar 

Download references

Acknowledgments

The authors acknowledge Fundação para a Ciência e Tecnologia, under the research project POCI/AMB/62704/2004, the leather company “Curtumes Aveneda” for supplying sludge’s for biodegradability tests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria J. Ferreira.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ferreira, M.J., Almeida, M.F., Pinho, S.C. et al. Alkaline Hydrolysis of Chromium Tanned Leather Scrap Fibers and Anaerobic Biodegradation of the Products. Waste Biomass Valor 5, 551–562 (2014). https://doi.org/10.1007/s12649-013-9252-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-013-9252-9

Keywords

Navigation