Skip to main content
Log in

A brief overview on mechanosensing and stick-slip motion at the leading edge of migrating cells

  • Review paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

Cell migration is a highly dynamic and complex process that is crucial for executing many cellular behaviors and functions such as wound healing, morphogenesis, embryonic development, and tissue regeneration, to name a few. Here we provide a brief overview of the theoretical models focussing on the leading edge dynamics during the migration of cells. Besides, we also highlight the role of substrate mechanical properties, namely substrate elasticity and viscosity, in determining the cellular response in migration and spreading. In addition, we briefly discuss our theoretical model that elucidates the emergence of stick-slip motion during the crawling of cells on viscoelastic substrates. We further compare how the stick-slip dynamics are influenced by the force-dependent nature of the adhesion bonds dissociation pathways displaying catch versus slip behaviors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. R.  Ananthakrishnan and A.  Ehrlicher. Int. J. Biol. Sci., 3 303 (2007)

    Article  Google Scholar 

  2. M. L. Gardel, I. C. Schneider, Y.  Aratyn-Schaus, and C. M. Waterman. Annu. Rev. Cell Dev. Biol., 26 315 (2010a)

    Article  Google Scholar 

  3. D. M. Rose, R.  Alon, and M. H. Ginsberg. Immunol. Rev., 218 126 (2007)

    Article  Google Scholar 

  4. D.  Mukhopadhyay and R.  De. Phys. Biol., 16 046006 (2019)

    ADS  Google Scholar 

  5. D. Mukhopadhyay and R. De. Biophys. J., 121 481 (2022)

  6. S.  Moens and J.  Vanderleyden, Crit. Rev. Microbiol., 22 67 (1996)

    Article  Google Scholar 

  7. T.  Lämmermann and M.  Sixt. Curr Opin Cell Biol., 21 636 (2009)

    Article  Google Scholar 

  8. C.  Migliorini, Y.  Qian, H.  Chen, E. B. Brown, R. K. Jain, and L. L. Munn. Biophys. J., 83 1834 (2002)

    Article  ADS  Google Scholar 

  9. A.  Mogilner, E. L. Barnhart, and K.  Keren. Semin. Cell Dev. Biol., 100 143 (2020)

    Article  Google Scholar 

  10. E. L. Barnhart, G. M. Allen, F.  Jülicher, and J. A. Theriot. Biophys. J., 98 933 (2010)

    Article  ADS  Google Scholar 

  11. B.  Alberts, A.  Johnson, J.  Lewis, M.  Raff, K.  Roberts, and P.  Walter. Molecular biology of the cell, Garland Science, (2002)

  12. M.  Abercrombie. Proc. R. Soc. B: Biol. Sci., 207 129 (1980)

    ADS  Google Scholar 

  13. M. L. Gardel, I. C. Schneider, Y.  Aratyn-Schaus, and C. M. Waterman. Annu. Rev. Cell Dev. Biol., 26 315 (2010b)

    Article  Google Scholar 

  14. C.  Lin, E.  Espreafico, M.  Mooseker, and P.  Forscher. Neuron, 16 769 (1996)

    Article  Google Scholar 

  15. P.  Vallotton, G.  Danuser, S.  Bohnet, J.-J. Meister, and A. B. Verkhovsky. Mol. Biol. Cell, 16 1223 ( 2005)

    Article  Google Scholar 

  16. C.-H. Lin and P.  Forscher. Neuron, 14 763 (1995)

    Article  Google Scholar 

  17. C.  Jurado, J. R. Haserick, and J.  Lee. Mol. Biol. Cell, 16 507 (2005)

    Article  Google Scholar 

  18. T.  Mitchison and M.  Kirschner. Neuron, 1 761 (1988)

    Article  Google Scholar 

  19. Y. L. Wang. J. Cell Biol., 101 597 (1985)

    Article  Google Scholar 

  20. J.  Lee, A.  Ishihara, J.  Theriot, and K.  Jacobson. Nature, 362 167 (1993)

    Article  ADS  Google Scholar 

  21. G.  Ananthakrishna and R.  De. Lect. Notes Phys.705 423 (2006)

    Article  Google Scholar 

  22. R.  De and G.  Ananthakrishna. Phys. Rev. Lett., 97 165503 (2006)

    Article  ADS  Google Scholar 

  23. R.  Burridge and L.  Knopoff. Bull. Seismol. Soc. Am., 57 341 (1967)

    Article  Google Scholar 

  24. R.  De and G.  Ananthakrishna. EPL, 66 715 (2004)

    Article  ADS  Google Scholar 

  25. S. Derler and G.-M. Rotaru. Wear, 301 324 (2013)

  26. S.  Casado. Beilstein J. Nanotechnol., 8 159 (2017)

    Article  Google Scholar 

  27. R.  De, A.  Maybhate, and G.  Ananthakrishna. Phys. Rev. E, 70 046223 (2004)

    Article  ADS  Google Scholar 

  28. R.  De and G.  Ananthakrishna. Phys. Rev. E, 71 055201 (2005)

    Article  ADS  Google Scholar 

  29. R.  De and G.  Ananthakrishna. Eur. Phys. J. B, 61 475 (2008)

    Article  ADS  Google Scholar 

  30. J.  Kumar, R.  De, and G.  Ananthakrishna. Phys. Rev. E, 78 066119 (2008)

    Article  ADS  Google Scholar 

  31. S. N. Patek. Nature, 411 153 (2001)

    Article  ADS  Google Scholar 

  32. M. L. Gardel, B.  Sabass, L.  Ji, G.  Danuser, U. S. Schwarz, and C. M. Waterman. J. Cell Biol., 183 999 (2008)

    Article  Google Scholar 

  33. C. E. Chan and D. J. Odde. Science, 322 1687 (2008)

    Article  ADS  Google Scholar 

  34. B. L. Bangasser et al. Nat. Commun., 8 15313 (2017)

    Article  ADS  Google Scholar 

  35. Y.  Aratyn-Schaus and M. L. Gardel. Curr. Biol., 20 1145 (2010)

    Article  Google Scholar 

  36. C. I. Lacayo et al. PLoS Biol., 5 1 (2007)

    Article  Google Scholar 

  37. G.  Danuser, J.  Allard, and A.  Mogilner. Annu Rev Cell Dev Biol., 29 501 (2013)

    Article  Google Scholar 

  38. P.  DiMilla, K.  Barbee, and D.  Lauffenburger. Biophys. J., 60 15 (1991)

    Article  Google Scholar 

  39. S. P. Palecek, J. C. Loftus, M. H. Ginsberg, D. A. Lauffenburger, and A. F. Horwitz. Nature, 385 537 ( 1997)

    Article  ADS  Google Scholar 

  40. M.  Dembo, L.  Tuckerman, and W.  Goad. Cell Motil., 1 205 (1981)

    Article  Google Scholar 

  41. M.  Dembo and F.  Harlow. Biophys. J., 50 109 (1986)

    Article  ADS  Google Scholar 

  42. W.  Alt and M.  Dembo. Math. Biosci., 156 207 (1999)

    Article  Google Scholar 

  43. C.  Peskin, G.  Odell, and G.  Oster. Biophys. J., 65 316 (1993)

    Article  ADS  Google Scholar 

  44. A.  Mogilner and G.  Oster. Biophys. J., 71 3030 (1996)

    Article  ADS  Google Scholar 

  45. K.  Kruse, J. F. Joanny, F.  Jülicher, and J.  Prost. Phys. Biol., 3 130 (2006)

    Article  Google Scholar 

  46. B.  Rubinstein, M. F. Fournier, K.  Jacobson, A. B. Verkhovsky, and A.  Mogilner. Biophys. J., 97 1853 ( 2009)

    Article  ADS  Google Scholar 

  47. D.  Kabaso, R.  Shlomovitz, K.  Schloen, T.  Stradal, and N. S. Gov. PLoS Comput. Biol., 7 1 ( 2011)

    Article  Google Scholar 

  48. E. M. Craig, J.  Stricker, M.  Gardel, and A.  Mogilner. Phys. Biol., 12 035002 (2015)

    Article  ADS  Google Scholar 

  49. C. W. Wolgemuth. Biophys. J., 89 1643 (2005)

    Article  ADS  Google Scholar 

  50. G.  Giannone, B. J. Dubin-Thaler, H.-G. Döbereiner, N.  Kieffer, A. R. Bresnick, and M. P. Sheetz. Cell, 116 431 (2004)

    Article  Google Scholar 

  51. L.  Ji, J.  Lim, and G.  Danuser. Nat. Cell Biol., 10 1393 (2008)

    Article  Google Scholar 

  52. T.  Shemesh, A. D. Bershadsky, and M. M. Kozlov. Biophys. J., 102 1746 (2012)

    Article  ADS  Google Scholar 

  53. Y.  Li, P.  Bhimalapuram, and A. R. Dinner. J. Phys.: Condens. Matter, 22 194113 (2010)

    ADS  Google Scholar 

  54. G. I. Bell. Science, 200 618 (1978)

    Article  ADS  Google Scholar 

  55. B.  Sabass and U. S. Schwarz. J. Phys.: Condens. Matter, 22 194112 (2010)

    ADS  Google Scholar 

  56. P.  Sens. EPL, 104 38003 (2013)

    Article  ADS  Google Scholar 

  57. P.  Sens. PNAS USA, 117 24670 (2020)

    Article  ADS  Google Scholar 

  58. J. E. Ron, P.  Monzo, N. C. Gauthier, R.  Voituriez, and N. S. Gov. Phys. Rev. Research, 2 033237 (2020)

    Article  ADS  Google Scholar 

  59. K. Hennig et al. Sci. Adv., 6 eaau5670 (2020)

  60. P. S. De and R.  De. Phys. Rev. E, 100 012409 (2019)

    Article  ADS  Google Scholar 

  61. M.  Ehrbar et al. Biophys. J., 100 284 (2011)

    Article  ADS  Google Scholar 

  62. M. H. Zaman et al. PNAS USA, 103 10889 (2006)

    Article  ADS  Google Scholar 

  63. A.  Pathak and S.  Kumar. PNAS USA, 109 10334 (2012)

    Article  ADS  Google Scholar 

  64. R.  De, A.  Zemel, and S. A. Safran. Methods Cell Biol., 98 143 (2010)

    Article  Google Scholar 

  65. R.  De. Resonance, 24 289 (2019)

    Article  Google Scholar 

  66. K. M. Stroka and H.  Aranda-Espinoza. Cell Motil., 66 328 (2009)

    Article  Google Scholar 

  67. S. R. Peyton and A. J. Putnam. J. Cell. Physiol., 204 198 (2005)

    Article  Google Scholar 

  68. R. L. Klank et al. Cell Rep., 18 23 (2017)

    Article  Google Scholar 

  69. B. L. Bangasser, S. S. Rosenfeld, and D. J. Odde, Biophys. J., 105 581 (2013)

    Article  ADS  Google Scholar 

  70. T. A. Ulrich, E. M. de Juan Pardo, and S.  Kumar. Cancer Research, 69 4167 (2009)

  71. C. M. Lo, H. B. Wang, M.  Dembo, and Y. L. Wang. Biophys. J., 79 144 (2000)

    Article  Google Scholar 

  72. M.  Bennett, M.  Cantini, J.  Reboud, J. M. Cooper, P.  Roca-Cusachs, and M.  Salmeron-Sanchez. PNAS USA, 115 1192 ( 2018)

    Article  ADS  Google Scholar 

  73. O. Chaudhuri, L. Gu, M. Darnell, D. Klumpers, S. A. Bencherif, J. C. Weaver, N. Huebsch, and D. J. Mooney. Nat. Commun., 6 (2015)

  74. Z.  Gong et al. PNAS USA, 115 E2686 (2018)

    Google Scholar 

  75. L. A. Lautscham, C. Y. Lin, V.  Auernheimer, C. A. Naumann, W. H. Goldmann, and B.  Fabry. Biomaterials, 35 3198 (2014)

    Article  Google Scholar 

  76. R.  De. Commun Biol, 1 81 (2018)

    Article  Google Scholar 

  77. Y. V. Pereverzev, O. V. Prezhdo, M.  Forero, E. V. Sokurenko, and W. E. Thomas. Biophys. J., 89 1446 (2005)

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support from Science and Engineering Research Board (SERB), Grant No. SR/FTP/PS-105/2013, Department of Science and Technology (DST), India.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rumi De or Partho Sakha De.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (pdf 176 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De, R., De, P.S. A brief overview on mechanosensing and stick-slip motion at the leading edge of migrating cells. Indian J Phys 96, 2629–2638 (2022). https://doi.org/10.1007/s12648-022-02297-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-022-02297-0

Keywords

Navigation