Skip to main content
Log in

Investigation of bandgap properties in one-dimensional binary superconductor–dielectric photonic crystal: TE case

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

A binary superconductor–dielectric photonic crystal (PC) is proposed. The PC has the structure (AB)N with layer A representing the superconducting layer and layer B the dielectric material. The transfer matrix technique is used to deduce the transmission coefficient through the PC. The properties of photonic bandgaps (PBGs) arising in the transmission spectra are studied with the angle of incidence and with all parameters of the superconductor such as thickness, London penetration length, and critical temperature. Many interesting findings were reached: The PBG width decreases with increasing the incidence angle until it disappears for high incidence angles. There is an optimum superconducting layer thickness at which the PBG shows a maximum. The critical temperature has the lowest effect on the PBG width among the superconductor parameters, whereas London penetration length has the topmost effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. A Usman, A Sattar and H Latif Appl. Nanosci. 10 3933 (2020).

    Article  ADS  Google Scholar 

  2. P Wang, L Chen and X Zhang Opt. Quant. Electron. 51 75 (2019).

    Article  Google Scholar 

  3. A Kumar, N Kumar and K B Thapa Eur. Phys. J. Plus 133 250 (2018).

    Article  Google Scholar 

  4. F Segovia-Chaves and H Vinck-Posada Results Phys. 16 102947 (2020).

  5. J Song, H Sun and Y Xu Opt. Quant. Electron. 32 1295 (2000).

    Article  Google Scholar 

  6. J S Patel and K Rastani Opt. Lett. 16 532 (1991).

    Article  ADS  Google Scholar 

  7. M Sodagar, M Miri, A A Eftekhar and A Adibi Opt. Express 23 2676 (2015).

    Article  ADS  Google Scholar 

  8. A Banerjee Optik 122 355 (2011).

    Article  ADS  Google Scholar 

  9. V Ya Zyryanov, V A Gunyakov, S A Myslivets, V G Arkhipkin and V F Shabanov Mol. Cryst. Liq. Cryst. 488 118 (2008).

    Article  Google Scholar 

  10. V I Kopp, Z-Q Zhang and A Z Genack Prog. Quant. Electron. 27 369 (2003).

    Article  ADS  Google Scholar 

  11. A Banerjee Prog. Electromagn. Res. 89 11 (2009).

    Article  Google Scholar 

  12. S K Awasthi, U Malaviya and S P Ojha J. Opt. Soc. Am. B 23 2566 (2006).

    Article  ADS  Google Scholar 

  13. W C Hopman, P Pottier, D Yudistira, J Van Lith, P V Lambeck, R M De La Rue et al IEEE J. Sel. Top. Quant. Electron. 11 1 (2016).

    Google Scholar 

  14. V Kumar, K S Singh and S P Ojha Optik 122 1183 (2011).

    Article  ADS  Google Scholar 

  15. T Chen, Z Han, J Liu and Z Hong Appl. Opt. 53 3454 (2014).

    Article  ADS  Google Scholar 

  16. J E Baker, R Sriram and B L Miller Lab. Chip. 21 971 (2015).

    Article  Google Scholar 

  17. F Segovia-Chaves and H Vinck-Posada Phys. c: Supercond. Appl. 553 1 (2018).

    Article  ADS  Google Scholar 

  18. F Segovia-Chaves and H Vinck-Posada Phys. c: Supercond. Appl. 556 7 (2019).

    Article  ADS  Google Scholar 

  19. C J Wu, B H Chu, M T Weng and H L Lee J. Electromagn. Waves Appl. 23 437 (2009).

    Article  Google Scholar 

  20. C J Wu, B H Chu and M T Weng J. Electromagn. Waves Appl. 23 129 (2009).

    Article  Google Scholar 

  21. X Wang, X Hu, Y Li, W Jia, C Xu, X Liu et al Appl. Phys. Lett. 80 4291 (2002).

    Article  ADS  Google Scholar 

  22. S K Awasthi and S P Ojha Prog. Electromagn. Res. M 4 117 (2008).

    Article  Google Scholar 

  23. A Banerjee Prog. Electromagn. Res. 11 129 (2009).

    Article  Google Scholar 

  24. H Contopanagos, E Yablonovitch and N G Alexopoulous J. Opt. Soc. Am. A 16 2294 (1999).

    Article  ADS  Google Scholar 

  25. H Contopanagos, N G Alexopoulous and E Yablonovitch IEEE Trans. Microw. Theory Tech. 46 1310 (1998).

    Article  ADS  Google Scholar 

  26. A H Aly, H A Elsayed and S A El-Naggar J. Mod. Opt. 61 1064 (2014).

    Article  ADS  Google Scholar 

  27. J Wu and J Gao Optik 126 5368 (2015).

    Article  ADS  Google Scholar 

  28. A Kumar, K P Thapa and S P Ojha Indian J. Phys. 93 791 (2019).

    Article  ADS  Google Scholar 

  29. Y Trabelsi Opt. Quant. Electron. 53 76 (2021).

    Article  Google Scholar 

  30. A H Aly, A A Ameen, H A ElSayed and S H Mohamed Opt. Quant. Electron. 50 361 (2018).

    Article  Google Scholar 

Download references

Acknowledgements

The authors deeply acknowledge the financial support of the Arab Fund for Economic and Social Development.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Taya.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest with anyone.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taya, S.A., Ramahi, O.M., Abutailkh, M.A. et al. Investigation of bandgap properties in one-dimensional binary superconductor–dielectric photonic crystal: TE case. Indian J Phys 96, 2151–2160 (2022). https://doi.org/10.1007/s12648-021-02151-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-021-02151-9

Keywords

Navigation