Skip to main content

Advertisement

Log in

Dot enzyme-linked immunosorbent assay (ELISA) for the detection of Toxocara infection using a rat model

  • Original Article
  • Published:
Journal of Parasitic Diseases Aims and scope Submit manuscript

Abstract

Toxocariasis is a zoonotic disease usually caused by dog and cat roundworms, Toxocara canis and T. cati. Detection and diagnosis is difficult in paratenic and accidental hosts, including humans, as they cannot be detected through conventional methods such as fecal examination. Diagnosis therefore relies on immunological methods and molecular methods such as enzyme-linked immunosorbent assay (ELISA) and Western Blot, which are both time-consuming and requires sophisticated equipment. In the Philippines, only a few studies are available on Toxocara seroprevalence. Therefore, there is a need to adapt methods for serodiagnosis of Toxocara infection in humans for the Philippine setting. A dot enzyme linked immunosorbent assay (dot-ELISA) was standardized using T. canis excretory-secretory antigens. Test sera were collected from laboratory rats (Sprague–Dawley strain) experimentally infected with embryonated eggs of T. canis and Ascaris suum as well as rice field rats naturally infected with Taenia taeniaeformis and Nippostrongylus sp. Optimum conditions used were 20 µg/ml antigen concentration and 1:10 serum dilution. The sensitivity, specificity, positive, and negative predictive values were 90% (95% CI 55.5–99.7%), 100% (95% CI 69.2–100.0%), 100% (95% CI 66.4–100%), and 90.9% (95% CI 58.7–99.8%), respectively. Dot-ELISA has the potential to be developed as a cheaper, simpler, and more practical method for detection of anti-Toxocara antibodies on accidental hosts. This is a preliminary study conducted on experimental animals before optimization and standardization for human serum samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Alcantara-Neves NM, dos Santos AB, Mendonca LR, Figuereido CAV, Pontes-de-Carvalho L (2008) An improved method to obtain antigen-excreting Toxocara canis larvae. Exp Parasitol 119(3):349–351. doi:10.1016/j.exppara.2008.03.006

    Article  CAS  PubMed  Google Scholar 

  • Bin LLC, Santarem VA, Laposy CB, Rubinsky-Elefant G, Roldan WH, Giuffrida R (2016) Kinetics and avidity of anti-Toxocara antibodies (IgG) in rabbits experimentally infected with Toxocara canis. Rev Bras Parasitol Vet 25(1):99–104. doi:10.1590/S1984-29612015067

    Article  CAS  PubMed  Google Scholar 

  • Bojanich MV, Marino GL, Lopez MA, Alonzo JM (2012) An evaluation of the dot-ELISA procedure as a diagnostic test in an area with a high prevalence of human Toxocara canis infection. Mem Inst Oswaldo Cruz 107(2):194–197

    Article  PubMed  Google Scholar 

  • Bradbury SM, Percy DH, Strejan GH (1974) Immunology of Ascaris suum infection. I. Production of reaginic antibodies to worm components in rats. Int Arch Allergy Appl Immunol 46(4):498–511

    Article  CAS  PubMed  Google Scholar 

  • Bowman DD, Mika-Grieve M, Grieve RB (1987) Circulating excretory-secretory antigen levels and specific antibody responses in mice infected with Toxocara canis. Am J Trop Med Hyg 36(1):75–82

    Article  CAS  PubMed  Google Scholar 

  • Camargo ED, Nakamura PM, Vaz AJ, da Silva MV, Chieffi PP, de Melo EO (1992) Standardization of dot-ELISA for the serological diagnosis of toxocariasis and comparison of the assay with ELISA. Rev Inst Med Trop Sao Paulo 34(1):55–60

    Article  CAS  PubMed  Google Scholar 

  • Centers for Disease Control and Prevention (2013) Parasites-Toxocariasis (also known as roundworm infection). http://www.cdc.gov/parasites/toxocariasis/index.html. Accessed 15 June 2015

  • Chieffi PP, Peres BA, de Mello EO, Kanamura H, Brandao MM (1995) Persistence of specific antibody response in different experimental infections of mice with Toxocara canis larvae. Rev Inst Med Trop Sao Paulo 37(3):187–190

    Article  CAS  PubMed  Google Scholar 

  • De Savigny DH, Tizard IR (1977) Toxocara larva migrans: the use of larval secretory antigens in haemagglutination and soluble antigen fluorescent antibody tests. Trans R Soc Trop Med Hyg 71(6):501–507

    Article  PubMed  Google Scholar 

  • Despommier D (2003) Toxocariasis: clinical aspects, epidemiology, medical ecology, and molecular aspects. Clin Microbiol Rev 16(2):256–272

    Article  Google Scholar 

  • Dunsmore JD, Thompson RCA, Bates IA (1983) The accumulation of Toxocara canis larvae in the brains of mice. Int J Parasitol 33(5):517–521. doi:10.1016/S0020-7519(83)80017-4

    Article  Google Scholar 

  • Fajutag AJM, Paller VGV (2013) Toxocara egg soil contamination and its seroprevalence among public school children in Los Baños, Laguna, Philippines. Southeast Asian J Trop Med Public Health 44(4):552–560

    Google Scholar 

  • Ferens WA, Arai HP, Befus AD (1990) Trickle infections with Nippostrongylus brasiliensis in rats: larval migration through the lungs. J Parasitol 76(5):685–689

    Article  Google Scholar 

  • Girdhar M (2003) Taenia taeniaeformis. Animal Diversity Web. http://animaldiversity.org/accounts/Taenia_taeniaeformis. Accessed 17 May 2016

  • Holland CV, Hamilton CM (2013) The significance of cerebral toxocariasis: a model system for exploring the link between brain involvement, behavior and the immune response. J Exp Biol 216:78–83. doi:10.1242/jeb.074120

    Article  PubMed  Google Scholar 

  • Jacquier P, Gottstein B, Stingelin Y, Eckert J (1991) Immunodiagnosis of toxocariasis in humans: evaluation of a new enzyme-linked immunosorbent assay kit. J Clin Microbiol 29(9):1831–1835

    CAS  PubMed  PubMed Central  Google Scholar 

  • Janecek E, Beineke A, Schnieder T, Strube C (2014) Neurotoxocarosis: marked preference of Toxocara canis for the cerebrum and T. cati for the cerebellum in the paratenic model host mouse. Parasit Vectors 7:194. doi:10.1186/1756-3305-7-194

    Article  PubMed  PubMed Central  Google Scholar 

  • Kayes SG, Omholt PE, Grieve RB (1985) Immune responses of CBA/J mice to graded infections with Toxocara canis. Infect Immun 48(3):697–703

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kennedy MW, Qureshi F, Fraser EM, Haswell-Elkins MR, Elkins DB, Smith HV (1989) Antigenic relationships between the surface-exposed, secreted and somatic materials of the nematode parasites Ascaris lumbricoides, Ascaris suum, and Toxocara canis. Clin Exp Immunol 75(3):493–500

    CAS  PubMed  PubMed Central  Google Scholar 

  • Macpherson CNL (2013) The epidemiology and public health importance of toxocariasis: a zoonosis of global importance. Int J Parasitol 43(12):999–1008. doi:10.1016/j.ijpara.2013.07.004

    Article  PubMed  Google Scholar 

  • Magnaval JF, Glickman LT, Dorchies P, Morassin B (2001) Highlights of human toxocariasis. Korean J Parasitol 39(1):1–11. doi:10.3347/kjp.2001.39.1.1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maizels RM, de Savigny D, Ogilvie BM (1984) Characterization of surface and excretory-secretory antigens of Toxocara canis infective larvae. Parasite Immunol 6(1):23–27

    Article  CAS  PubMed  Google Scholar 

  • Mazur-Melewska K, Mania A, Figlerowicz M, Kemnitz P, Sluzewski W, Michalak M (2012) The influence of age on a clinical presentation of Toxocara spp. infection in children. Ann Agric Environ Med 19(2):233–236

    PubMed  Google Scholar 

  • Moreira GMSG, de Lima Telmo P, Mendonça M, Moreira AN, McBride AJA, Scaini CJ, Conceição FR (2014) Human toxocariasis: current advances in diagnostics, treatment, and interventions. Trends Parasitol 30(9):456–464. doi:10.1016/j.pt.2014.07.003

    Article  PubMed  Google Scholar 

  • Myers P, Espinosa R, Parr CS, Jones T, Hammond GS, Dewey TA (2016a) Ascaris suum. The Animal Diversity Web. http://animaldiversity.org. Accessed 17 May 2016

  • Myers P, Espinosa R, Parr CS, Jones T, Hammond GS, Dewey TA (2016b) Toxocara canis. The Animal Diversity Web. http://animaldiversity.org. Accessed 17 May 2016

  • Nunes CM, Tundisi RN, Garcia JF, Heinemann MB, Ogassawara S, Richtzenhain LJ (1997) Cross-reactions between Toxocara canis and Ascaris suum in the diagnosis of visceral larva migrans by Western blotting technique. Rev Inst Med Trop Sao Paulo 39(5):253–256

    Article  CAS  PubMed  Google Scholar 

  • Paller VGV, De Chavez ERC (2014) Toxocara (Nematoda:Ascaridida) and other soil-transmitted helminth eggs contaminating soils in selected urban and rural areas in the Philippines. Sci World J 2014:38622. doi:10.1155/2014/386232

    Article  Google Scholar 

  • Pawlowski Z (2001) Toxocariasis in humans: clinical expression and treatment dilemma. J Helminthol 75(4):299–305

    Article  CAS  PubMed  Google Scholar 

  • Pinelli E, Brandes S, Dormans J, Gremmer E, van Loveren H (2007) Infection with the roundworm Toxocara canis leads to exacerbation of experimental allergic airway inflammation. Clin Exp Allergy 38(4):649–658

    Article  PubMed  Google Scholar 

  • Rai SK, Uga S, Wu Z, Takahashi Y, Matsumura T (1997) Use of polymerase chain reaction in the diagnosis of toxocariasis: an experimental study. Southeast Asian J Trop Med Public Health 28(3):541–544

    CAS  PubMed  Google Scholar 

  • Roldan W, Cornejo W, Espinoza Y (2006) Evaluation of the dot enzyme-linked immunosorbent assay in comparison with standard ELISA for the immunodiagnosis of human toxocariasis. Mem Inst Oswaldo Cruz 101(1):71–74

    Article  CAS  PubMed  Google Scholar 

  • Roldan WH, Cavero YA, Espinoza YA, Jimenez S, Gutierrez CA (2010) Human toxocariasis: a seroepidemiological survey in the Amazonian city of Yurimaguas, Peru. Rev Inst Med Trop Sao Paulo 52(1):37–42

    Article  PubMed  Google Scholar 

  • Romasanta A, Romero JL, Arias M, Sánchez-Andrade R, López C, Suárez JL, Díaz P, Díez-Baños P, Morrondo P, Paz-Silva A (2003) Diagnosis of parasitic zoonoses by immunoenzymatic assays—analysis of cross-reactivity among the excretory/secretory antigens of Fasciola hepatica, Toxocara canis, and Ascaris suum. Immunol Invest 32(3):131–142

    Article  CAS  PubMed  Google Scholar 

  • Rubinsky-Elefant G, Hirata CE, Yamamoto JH, Ferreira MU (2010) Human toxocariasis: diagnosis, worldwide seroprevalences and clinical expression of the systemic and ocular forms. Ann Trop Med Parasitol 104(1):3–23. doi:10.1179/136485910X12607012373957

    Article  CAS  PubMed  Google Scholar 

  • Thomas D, Jeyathilakan N, Basith SA, Senthilkumar TMA (2014) In vitro production of Toxocara canis excretory-secretory (TES) antigen. J Parasit Dis 40(3):1038–1043. doi:10.1007/s12639-014-0630-4

    Article  PubMed  PubMed Central  Google Scholar 

  • Van de N, Vu Trung N, Duyet LV, Chai JY (2013) Molecular diagnosis of an ocular toxocariasis patient in Vietnam. Korean J Parasitol 51(5):563–567. doi:10.3347/kjp.2013.51.5.563

    Article  PubMed  PubMed Central  Google Scholar 

  • Watthanakulpanich D (2010) Diagnostic trends of human toxocariasis. J Trop Med Parasitol 33(1):44–52

    Google Scholar 

  • Widmer D, Jurczynski K (2012) Infection with the strobilocercus of Taenia taeniaeformis in a Malagasy Giant Jumping Rat (Hypogeomys antimena). J Zoo Wildl Med 43(4):914–921. doi:10.1638/2012-0116R1.1

    Article  PubMed  Google Scholar 

  • Woodhall DM, Eberhard ML, Parise ME (2014) Neglected parasitic infections in the United States: toxocariasis. Am J Trop Med Hyg 90(5):810–813. doi:10.4269/ajtmh.13-0725

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu Z, Nagano I, Xu D, Takahashi Y (1997) Primers for polymerase chain reaction to detect genomic DNA of Toxocara canis and T. cati. J Helminthol 71(1):77–78

    Article  CAS  PubMed  Google Scholar 

  • Zibaei M, Sadjjadi SM, Uga S (2010) Experimental Toxocara cati infection in gerbils and rats. Korean J Parasitol 48(4):331–333. doi:10.3347/kjp.2010.48.4.331

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The researchers would like to thank the National Immunological Testing Laboratory (NITL), the National Institute of Molecular Biology and Biotechnology (BIOTECH) for the assistance and facilities provided. This research was supported by the University of the Philippines Enhanced Work and Research Grant (UP ECWRG) and the Department of Science and Technology – Accelerated Science and Technology Human Resource and Development Program (DOST-ASTHRDP).

Author information

Authors and Affiliations

Authors

Contributions

Conceived and designed the experiments: VGVP, IKMV; Performed the experiments: IKMV, CMB; Data analysis: IKMV; Contributed reagents/materials/analysis tools: VGVP, IKMV, CMB; All authors participated in writing the final paper.

Corresponding author

Correspondence to Vachel Gay V. Paller.

Ethics declarations

Conflict of interest

None.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paller, V.G.V., Besana, C.M. & Valdez, I.K.M. Dot enzyme-linked immunosorbent assay (ELISA) for the detection of Toxocara infection using a rat model. J Parasit Dis 41, 933–939 (2017). https://doi.org/10.1007/s12639-017-0914-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12639-017-0914-6

Keywords

Navigation