Skip to main content
Log in

Friction, Wear and Mechanical Properties of Al-Si LM6 Cast Alloy Processed in Semi-solid Stage

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

Dry sliding wear characteristics, mechanical properties and microstructural behavior of powder-chip based reinforcement silicon rich LM6 aluminum alloy, fabricated by semi-solid casting were investigated. Wear tests were conducted on powder-chip reinforced cast samples using the pin on disc apparatus under 5, 10 and 15 N with 0.4, 0.8 and 1.2 m/s sliding speeds for 250, 500 and 750 m sliding distances versus EN31 tool steel hardened to 62 HRC. An observation from the microstructure images indicated that the porosity of the cast composite reduces due to the distribution of un-melted chips inside the short cavities by the addition of reinforcement and confirmed with the obtained results of density. The fracture in cast specimens indicates that the micro-cracks were prevalently propagated along the broken eutectic silicon particles. Additionally, wear resistance was increased reasonably due to the inclusion of reinforcement under metallic wear environment. Worn surfaces SEM, EDS, XRD and, AFM analysis suggests that surfaces plastically deformed along with silicon brittle asperities which stuck on the softer surface of the contact layers, while dominant wear mechanisms were found from these surfaces and wear debris.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Basu B, Raju GB, Suri AK (2006) Int Mater Reviews 51:352

    Article  CAS  Google Scholar 

  2. Poria S, Sahoo P, Sutradhar G (2016) Silicon 8(4):591

    Article  CAS  Google Scholar 

  3. Mazahery A, Shabani MO (2013) Trans Non Met Soc China 23(7):1905

    Article  CAS  Google Scholar 

  4. Mousavian RT, Khosroshahi RA, Yazdani S, Brabazon D (2016) Mat Des 89:58

    Google Scholar 

  5. Singh J (2016) Friction 4(3):191

    Article  CAS  Google Scholar 

  6. Rodriguez J, Poza P, Garrido MA, Rico A (2007) Wear 262(3–4):292

    Article  CAS  Google Scholar 

  7. Guo X, Song K, Liang S, Wang X, Xang Y (2016) Tribo Trans 59(1):170

    Article  CAS  Google Scholar 

  8. Al-Qutub AM, Allam IM, Samad MAA (2008) J Mat Sci 43(17):5797

    Article  CAS  Google Scholar 

  9. Ghahremanian M, Niroumand B, Panjepour M (2012) Met Mater Int 18(1):149

    Article  CAS  Google Scholar 

  10. Sannino AP, Rack HJ (1995) Wear 189(1–2):1

    Article  CAS  Google Scholar 

  11. Prakash KP, Moorthy RS, Gopal PM, Kavimani V (2016) Int J Refra Met Hard Mater 54:223

    Article  Google Scholar 

  12. Prakash KS, Kanagaraj A, Gopal PM (2015) Trans Non Met Soc China 25(12):3893

    Article  Google Scholar 

  13. Sahin Y, Ozdin KA (2008) Mat Des 29(3):728

    Article  CAS  Google Scholar 

  14. Deuis RL, Subramanian C, Yellup JM (1997) Comp Sci Tech 57(4):415

    Article  CAS  Google Scholar 

  15. Basavarajappa S, Chandramohan G (2006) J Mater Eng Per 15(6):656

    Article  CAS  Google Scholar 

  16. Urena A, Rams J, Campo M, Sanchez M (2009) Wear 266(11–12):1128

    Article  CAS  Google Scholar 

  17. Carvalho O, Buciumeanu M, Madeira S, Soares D, Silva FS, Miranda G (2015) Tribo Int 90:148

    Article  CAS  Google Scholar 

  18. Puga H, Barbosa J, Soares D, Silva F, Ribeiro S (2009) J Mater Proces Tech 209(11):5195

    Article  CAS  Google Scholar 

  19. Chiba R, Yoshimura M (2015) J Manuf Proces 17:1

    Article  Google Scholar 

  20. Agarwal M, Srivastava R (2016) Mat Manu Pro 31(15):1958

    Article  CAS  Google Scholar 

  21. Wei-min M, Qiu Z, Da-ping Z (2010) Trans Non Met Soc China 20:1769

    Article  Google Scholar 

  22. Kumar D, Roy H, Show BK (2015) Tribo Trans 58(3):518

    Article  CAS  Google Scholar 

  23. Prasad BK (2006) Wear 260(11–12):1333

    Article  CAS  Google Scholar 

  24. Apps PJ, Bowen JR, Prangnell PB (2003) Acta Mater 51:2811

    Article  CAS  Google Scholar 

  25. Wang QG (2003) Met Mat Trans A 34(12):2887

    Article  Google Scholar 

  26. Akbari MK, Baharvandi HR, Mirzaee O (2014) J Comp Mat 48(27):3315

    Article  Google Scholar 

  27. Asavarajappa SB, Chandramohan G, Subramanian R, Chandrasekar A (2006) Mat Sci Poland 24 (2/1):357

    Google Scholar 

  28. Gopal PM, Prakash KS, Nagaraja S, Aravinth NK (2017) Tribo Inter 116:338

    Article  CAS  Google Scholar 

  29. Chen CM, Yang CC, Chao CG (2005) Mat Sci Eng A 397:178

    Article  Google Scholar 

  30. Kundu S, Das SK, Sahoo P (2016) Silicon. https://doi.org/10.1007/s12633-016-9450-8

  31. Prakash KP, Gopal PM, Kavimani V (2017) Ind J Eng Mat Science 24:270

    CAS  Google Scholar 

  32. Onat A (2010) J Alloys Comp 489:119

    Article  CAS  Google Scholar 

  33. Singh M, Mondal DP, Jha AK, Yegneswaran AH (2003) J Mat Eng Per 12(3):331

    Article  CAS  Google Scholar 

  34. Hanif M, Wani MF (2016) Mat Lett 176:91

    Article  Google Scholar 

  35. Singh S, Singh G, Kumar L, Singh S (2015) J Eng Tribo 229(5):597

    CAS  Google Scholar 

  36. Sharma V, Kumar S, Panwar RS, Pandey OP (2012) J Mat Sci 47(18):6633

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The Authors would like to thank Dr. Prabhat Kumar Dwivedi, Senior Scientific Officer, center of nanosciences, Indian Institute of Technology Kanpur, for his assistance extended during this work. Authors are highly appreciating the contribution of Workshop and Machine element lab members of Motilal Nehru National Institute of Technology, Allahabad.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mayank Agarwal.

Appendix

Appendix

Worn out specimens were taken for measurement of weight loss with an accuracy of ± 0.0001 mg after end of each operation. Specific wear rate ‘k’ (mm3/Nm), was calculated by equation (1) and coefficient of friction ‘μ’ by equation (1) as:

$$ k = \frac{m}{F_{N} tV_{s} \rho} $$
(1)
$$ \mu = \frac{F_{T}} {F_{N}} $$
(2)

Here,

m = Specimen mass loss (g), ρ = Density of the pin material (g/cm3) , t = Time duration for the test (s), Vs = Sliding velocity (m/s) , FN = Applied Load, and FT = Tangential applied forces

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agarwal, M., Srivastava, R. Friction, Wear and Mechanical Properties of Al-Si LM6 Cast Alloy Processed in Semi-solid Stage. Silicon 11, 355–366 (2019). https://doi.org/10.1007/s12633-018-9849-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-018-9849-5

Keywords

Navigation