Skip to main content

Advertisement

Log in

Design and Properties of New Lead-Free Solder Joints Using Sn-3.5Ag-Cu Solder

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

This article aims to reduce the melting temperature of lead-free solder alloy and promote its mechanical properties. Eutectic tin-silver lead-free solder has a high melting temperature 221 C used for electronic component soldering. This melting temperature, higher than that of lead–tin conventional eutectic solder, is about 183 C. The effect of the melt spinning process and copper additions into eutectic Sn-Ag solder enhances the crystallite size to about 47.92 nm which leads to a decrease in the melting point to about 214.70 C, where the reflow process for low heat-resistant components on print circuit boards needs lower melting point solder. The results showed the presence of intermetallic compound Ag3Sn formed in nano-scale at the Sn-3.5Ag alloy due to short time solidification. The presence of new intermetallic compound, IMC from Ag0.8Sn0.2 and Ag phase improves the mechanical properties, and then enhances the micro-creep resistance especially at Sn-3.5Ag-0.7Cu. The higher Young’s modulus of Sn-3.5Ag-0.5Cu alloy 55.356 GPa could be attributed to uniform distribution of eutectic phases. Disappearance of tin whiskers in most of the lead-free melt-spun alloys indicates reduction of the internal stresses. The stress exponent (n) values for all prepared alloys were from 4.6 to 5.9, this indicates to climb deformation mechanism. We recommend that the Sn95.7-Ag3.5-Cu0.7 alloy has suitable mechanical properties, low internal friction 0.069, low pasty range 21.7 C and low melting point 214.70 C suitable for step soldering applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Liew MC, Ahmad I, Lee LM et al (2012) Corrosion behavior of Sn-3.0Ag-0.5Cu lead-free solder in potassium hydroxide electrolyte. Metall Mater Trans A Phys Metall Mater Sci 43:3742–3747

    Article  CAS  Google Scholar 

  2. Kamal M, El-Bediwi A, Lashin AR, El-Zarka AH (2011) Copper effects in mechanical properties of rapidly solidified Sn-Pb-Sb Babbitt bearing alloys. Mater Sci Eng A 530:327–332

    Article  CAS  Google Scholar 

  3. Rosalbino F, Angelini E, Zanicchi G, Marazza R (2008) Corrosion behaviour assessment of lead-free Sn-Ag-M (M = In, Bi, Cu) solder alloys. Mater Chem Phys 109:386–391

    Article  CAS  Google Scholar 

  4. Zhang XP, Yu CB, Zhang YP et al (2007) Processing treatment of a lead-free Sn-Ag-Cu-Bi solder by rapid laser-beam reflowing and the creep property of its soldered connection. J Mater Process Technol 192–193:539–542

    Article  CAS  Google Scholar 

  5. Suh D, Kim D, Liu P, Kim H (2007) Effects of Ag content on fracture resistance of Sn–Ag–Cu lead-free solders under high-strain rate conditions. Mater Sci Eng A 460:595–603

    Article  CAS  Google Scholar 

  6. Shohji I, Yoshida T, Takahashi T, Hioki S (2004) Tensile properties of Sn–Ag based lead-free solders and strain rate sensitivity. Mater Sci Eng A 366:50–55

    Article  CAS  Google Scholar 

  7. Sun L, Chen M, Zhang L, Yang F (2017) Microstructures evolution and properties of Sn-Ag-Cu solder joints. Acta Metall Sin 53:615–621

    CAS  Google Scholar 

  8. Mccormack M, Jin S (1994) Improved mechanical properties in new, Pb-free solder alloys. J Electron Mater 23:715–720

    Article  CAS  Google Scholar 

  9. Meschter S, Snugovsky P, Bagheri Z et al (2014) Whisker formation on SAC305 soldered assemblies. JOM 66:2320–2333

    Article  CAS  Google Scholar 

  10. Shohji I, Yasuda K, Takemoto T (2005) Estimation of thermal fatigue resistances of Sn-Ag and Sn-Ag-Cu lead-free solders using strain rate sensitivity index. Mater Trans 46(11):2329–2334

    Article  CAS  Google Scholar 

  11. Shalaby RM (2010) Effect of rapid solidification on mechanical properties of a lead free Sn-3.5Ag solder. J Alloys Compd 505:113–117

    Article  CAS  Google Scholar 

  12. Williamson DM, Field JE, Palmer SJP, Siviour CR (2007) Rate dependent strengths of some solder joints. J Phys D Appl Phys 40:4691–4700

    Article  CAS  Google Scholar 

  13. Puttlitz KJ, Galyon GT (2007) Impact of the ROHS directive on high-performance electronic systems Part I: need for lead utilization in exempt systems. Lead-Free Electron Solder A Spec Issue J Mater Sci Mater Electron 40:331–346

  14. Galyon GT (2005) Annotated tin whisker bibliography and anthology. IEEE Trans Electron Packag Manuf 28:94–122

    Article  CAS  Google Scholar 

  15. Shin SW, Yu J (2005) Creep deformation of Sn-3.5Ag-xCu and Sn-3.5Ag-xBi solder joints. J Electron Mater 34:188–195

    Article  CAS  Google Scholar 

  16. Pan HJ (2011) Synthesis of Sn-3.5Ag alloy nanosolder by chemical reduction method. Mater Sci Appl 2:1480–1484

    CAS  Google Scholar 

  17. Tsao LC (2011) Evolution of nano-Ag3Sn particle formation on Cu-Sn intermetallic compounds of Sn3.5Ag0.5Cu composite solder/Cu during soldering. J Alloys Compd 509:2326–2333

    Article  CAS  Google Scholar 

  18. Rosen G, Avissar J, Gefen Y, Baram J (1987) Centrifuge melt spinning. J Phys E 20:571–574

    Article  Google Scholar 

  19. Kamal M, Mohammad U (2012) A review: chill-block melt spin technique, theories & applications ISBN: 978-1-60805-151-9, Bentham e Books, Bentham Science Publishers

  20. Kamal M, Gouda E (2008) Effect of zinc additions on structure and properties of Sn–Ag eutectic lead-free solder alloy. J Mater Sci Mater Electron 19:81–84

    Article  CAS  Google Scholar 

  21. El-Bediwi A, Lashin AR, Mossa M, Kamal M (2011) Indentation creep and mechanical properties of quaternary Sn-Sb based alloys. Mater Sci Eng A 528:3568–3572

    Article  CAS  Google Scholar 

  22. Juhász A, Tasnádi P, Kovács I (1986) Superplastic indentation creep of lead—tin eutectic. J Mater Sci Lett 5:35–36

    Article  Google Scholar 

  23. Roumina R, Raeisinia B, Mahmudi R (2004) Room temperature indentation creep of cast Pb-Sb alloys. Scr Mater 51:497–502

    Article  CAS  Google Scholar 

  24. Kamal M, El-Bediwi A, Jomaan M (2012) Rapid quenching of liquid lead base alloys for high performance storage battery applications, IJET-IJENS, 12, 06

  25. Duwez P, Willens RH, Klement W (1960) Metastable electron compound in Ag-Ge alloys. J Appl Phys 31:1137

    Article  CAS  Google Scholar 

  26. Giessen BC, Grant NJ (1965) New intermediate phases in transition metal systems, III. Acta Crystallogr 18:1080–1081

    Article  CAS  Google Scholar 

  27. Li JF, Agyakwa PA, Johnson CM (2012) Effect of trace Al on growth rates of intermetallic compound layers between Sn-based solders and Cu substrate. J Alloys Compd 545:70–79

  28. Bieler TR, Jiang H (2006) Influence of Sn grain size and orientation on the thermomechanical response and reliability of Pb-free solder joints. IEEE Trans Compon Packag Technol 31(2):1462–1467

    Google Scholar 

  29. Cullity BD (1959) Elements of X-ray diffraction, vol 262. Addison-Wesley Publishing Company, USA, p 317

    Google Scholar 

  30. Kamal M, El-Bediwi A-B, Shalaby R, Younus M (2015) A study of eutectic indium-bismuth and indium-bismuth-tin Field’s metal rapidly solidified from melt. J Adv Phys 7:1404–1413

    Google Scholar 

  31. Van Arkel EA (1925) Über die Verformung des Kristallgitters von Metallen durch mechanische Bearbeitung. Physica 34:208–212

  32. Williamson G, Hall W (1953) X-ray line broadening from filed aluminium and wolfram. Acta Metall 1:22–31

    Article  CAS  Google Scholar 

  33. Kamal M, El-Bediwi A-B (2000) Structure, mechanical metallurgy and electrical transport properties of rapidly solidified Pb50Sn50−xBix alloys. J Mater Sci Mater Electron 11(6):519–523

    Article  CAS  Google Scholar 

  34. Shimoda M, Hidaka N, Watanabe H, Yoshiba M (2011) High temperature creep properties of Sn-3.5 Ag and Sn-5Sb lead-free solder alloys. Trans JWRI 40:2

    Google Scholar 

  35. Kumar R (2014) Effect of Ag on Sn-Cu lead free solders effect of Ag on Sn-Cu lead free solders. Thesis of PhD in Department of Metallurgical and Materials Engineering National Institute Of Technology, Rourkela

  36. Shalaby RM (2013) Effect of silver and indium addition on mechanical properties and indentation creep behavior of rapidly solidified Bi-Sn based lead-free solder alloys. Mater Sci Eng A 560:86–95

    Article  CAS  Google Scholar 

  37. Zu FQ, Zhu ZG, Zhang B et al (2001) Post-melting anomaly of Pb-Bi alloys observed by internal friction technique. J Phys Condens Matter 13:11435–11442

    Article  CAS  Google Scholar 

  38. Sweatman K, Mcdonald SD, Whitewick M et al. (2013) Grain refinement for improved lead-free solder joint reliability. In: Proceedings of IPC APEX EXPO Conference & Exhibition 2013, APEX EXPO 2013, San Diego, United States, pp 561–589

  39. Yi-Wen C, Thomas AS (2003) Predicting tensile properties of the bulk 96.5Sn-3.5Ag lead-free solder. J Electron Mater (32) 6(2003):1–19

    Google Scholar 

  40. Sun L, Zhang L (2015) Properties and microstructures of Sn-Ag-Cu-X lead-free solder. Adv Mater Sci Eng 2015:1–16

  41. Pandher RS, Lewis BG, Vangaveti R, Singh B (2007) Drop shock reliability of lead-free alloys—effect of micro-additives. In: Proceedings - electronic components and technology conference, pp 669–676

  42. El-Ashram T, Shalaby RM (2005) Effect of rapid solidification and small additions of Zn and Bi on the structure and properties of Sn-Cu eutectic alloy. J Electron Mater 34:212–215

    Article  CAS  Google Scholar 

  43. Kamal M, El-Ashram T (2007) Microcreep of rapidly solidified Sn–0.7 wt.% Cu–In solder alloys. Mater Sci Eng A 456:1–4

    Article  CAS  Google Scholar 

  44. Shalaby RM (2015) Indium, chromium and nickel-modified eutectic Sn–0.7 wt% Cu lead-free solder rapidly solidified from molten state. J Mater Sci Mater Electron 26:6625–6632

    Article  CAS  Google Scholar 

  45. Lin C, Chu D (2005) Creep rupture of lead-free Sn-3. 5Ag and Sn-3. 5Ag-0. 5Cu solders. J Mater Sci Mater Electron 16:355–365

    Article  CAS  Google Scholar 

  46. Gumaan MS, Ali EA, Shalaby RM, Kamal M (2016) Improvement of the mechanical properties of Sn-Ag-Sb lead-free solders: effects of Sb addition and rapidly solidified. PCIM Eur 2016; Int Exhib Conf Power Electron Intell Motion, Renew Energy Energy Manag 9

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rizk Mostafa Shalaby.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shalaby, R.M., Kamal, M., Ali, E.A.M. et al. Design and Properties of New Lead-Free Solder Joints Using Sn-3.5Ag-Cu Solder. Silicon 10, 1861–1871 (2018). https://doi.org/10.1007/s12633-017-9690-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-017-9690-2

Keywords

Navigation