Skip to main content
Log in

Effect of Molybdenum Disulfide Layer on Surface Plasmon Resonance Biosensor for the Detection of Bacteria

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

In this study, a molybdenum disulfide (MoS2) based surface plasmon resonance (SPR) biosensor is proposed. The reflectance curves for the proposed SPR biosensor are analyzed and compared with the graphene based and the conventional SPR biosensors. It is observed that the performance parameters of the proposed biosensor- sensitivity, detection accuracy, and the quality factor are enhanced by the utilization of the adsorption property of MoS2 for monolayer and bi-layer MoS2. Also, the effect of increasing the number of layers of MoS2 on the reflectance curve is analyzed and compared.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Otto A (1968) Excitation of surface plasma waves in silver by the method of frustrated total reflection. Springer Z Physik 216:398–410

    Article  CAS  Google Scholar 

  2. Kretschmann E, Raether H (1968) Radiative decay of non-radiative surface plasmons excited by light. Springer Z Naturforsch 23(A):2135–2136

    CAS  Google Scholar 

  3. Liedberg B, Nylander C, Lundstrom I (1983) Surface plasmons resonance for gas detection and biosensing. Sens Actuators 4:299–304

    Article  CAS  Google Scholar 

  4. Snopok B A, Kostyukevich K V, Lysenko S I, Lytvyn P M, Lytvyn O S, Mamykin S V, Zynyo S A, Shepelyavyj P E, Kostyukevich S A, Shirshov Y M, Venger E F (2001) Optical biosensors based on the surface plasmon resonance phenomenon: optimization of the metal layer parameters. Semicond Phys Quantum Electron Optoelectron 4(1):56–69

    CAS  Google Scholar 

  5. Zhu X M, Lin P H, Ao P, Sorensen L B (2002) Surface treatments for surface plasmon resonance biosensors. Elsevier Sens Actuators B: Chem 84(2–3):106–112

    Article  CAS  Google Scholar 

  6. Ong B H, Yuan X, Tjin S C, Zhang J, Ng H M (2006) Optimised film thickness for maximum evanescent field enhancement of a bimetallic film surface plasmon resonance biosensor. Sens Actuators B: Chem 114 (2):1028–1034

    Article  CAS  Google Scholar 

  7. Zhao J, Zhang X Y, Yonzon C R, Haes A J, Van Duyne R P (2006) Localized surface plasmon resonance biosensors. Nanomedicine (Lond) 1(2):219–228

    Article  CAS  Google Scholar 

  8. Lee K L, Lee C W, Wang W S, Wei P K (2007) Sensitive biosensor array using surface plasmon resonance on metallic nanoslits. J Biomed Opt 12(4):044023

    Article  Google Scholar 

  9. Raether H (1988) Surface plasmons on smooth and rough surfaces and on grating. Springer, Berlin, p 111

    Book  Google Scholar 

  10. Wu L, Chu H S, Koh W S, Li E P (2010) Highly sensitive graphene biosensors based on surface plasmon resonance. Opt Express 18(14):14395–1440

    Article  CAS  Google Scholar 

  11. Homola J (2003) Present and future of surface plasmon resonance biosensors. Anal Bioanal Chem 377 (3):528–539

    Article  CAS  Google Scholar 

  12. Lertvachirapaiboon C, Baba A, Ekgasit S, Thammacharoen C, Shinbo K, Kato K, Kaneko F (2011) Gold nanoparticles synthesis used for sensor applications. In: IEEE Conf Proc ISEIM

    Book  Google Scholar 

  13. Choi S H, Kim Y L, Byun K M (2011) Graphene-on-silver substrates for sensitive surface plasmon resonance imaging biosensors. Opt Express 19(2):458–466

    Article  CAS  Google Scholar 

  14. Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A (2004) Electric field effect in atomically thin carbon films. Science 306(5696):666– 669

    Article  CAS  Google Scholar 

  15. Nair R R, Blake P, Grigorenko A N, Novoselov K S, Booth T J, Stauber T, Peres N M R, Geim A K (2008) Fine structure constant defines visual transparency of graphene. Science 320(5881):1308–1308

    Article  CAS  Google Scholar 

  16. Kim J A, Hwang T, Dugasani S R, Amin R, Kulkarni R, Park S H, Kim T (2013) Graphene based fiber optic surface Plasmon resonance for bio-chemical sensor applications. Sens Actuators B: Chem 187:426–433

    Article  CAS  Google Scholar 

  17. Elias D C, Gorbachev R V, Mayorov A S, Morozov S V, Zhukov A A, Blake P, Ponomarenko L A, Grigorieva I V, Novoselov K S, Guinea F, Geim A K (2011) Dirac conesreshaped by interaction effects in suspended graphene. Nat Phys 7:701–704

    Article  CAS  Google Scholar 

  18. Zeng S, Hu S, Xia J, Anderson T, Dinh X Q, Meng X M, Coquet P, Yong K T (2015) Graphene–mos2 hybrid nanostructures enhanced surface plasmon resonance biosensors. Sens Actuators B Chem 207:801–810

    Article  CAS  Google Scholar 

  19. Liu Y, Dong X, Chen P (2012) Biological and chemical sensors based on graphene materials. Chem Soc Rev 41:2283–2307

    Article  CAS  Google Scholar 

  20. Szunerits S, Maalouli N, Wijaya E, Vilcot J P, Boukherroub R (2013) Recent advances in the development of graphene-based surface plasmon resonance (SPR) interfaces. Anal Bioanal Chem 405:1435–1443

    Article  CAS  Google Scholar 

  21. Verma A, Prakash A, Tripathi R (2014) Performance analysis of graphene based surface plasmon resonance biosensors for detection of pseudomonas-like bacteria. Opt Quantum Electron 47(5):1197–1205

    Article  Google Scholar 

  22. Verma A, Prakash A, Tripathi R (2015) Sensitivity enhancement of surface plasmon resonance biosensor using graphene and air gap. Opt Commun 357:106–112

    Article  CAS  Google Scholar 

  23. Mak K F, Lee C, Hone J, Shan J, Heinz T F (2010) Atomically thin MoS2: a new direct-gap semiconductor. Phys Rev Lett 105:136805

    Article  Google Scholar 

  24. Perkins F K, Friedman A L, Cobas E, Campbell P M, Jernigan G G, Jonker B T (2013) Chemical vapor sensing with monolayer MoS2. Nano Lett 13(2):668–673

    Article  CAS  Google Scholar 

  25. Du J, Wang Q, Jiang G, Xu C, Zhao C, Xiang Y, Chen Y, Wen S, Zhang H (2014) Ytterbium-doped fiber laser passively mode locked by few-layer Molybdenum Disulfide (MoS2) saturable absorber functioned with evanescent field interaction. Sci Rep 4:6346. doi:10.1038/srep06346

    Article  CAS  Google Scholar 

  26. Salihoglu O, Balci S, Kocabas C (2012) Plasmon-polaritons on graphene-metal surface and their use in biosensors. Appl Phys Lett 100(21):213110

    Article  Google Scholar 

  27. Lopez-Sanchez O, Lembke D, Kayci M, Radenovic A, Kis A (2013) Ultrasensitive photodetectors based on monolayer MoS2. Nat Nanotechnol 8(7):497–501

    Article  CAS  Google Scholar 

  28. Sharma B K (2014) Solid state physics and devices-the harbinger of third wave of civilization. I.C. chips of future generation part 3. Carriers-phonon interaction in graphene. OpenStax-CNX module: m44257

  29. Zhu C, Zeng Z, Li H, Li F, Fan C, Zhang H (2013) Single-layer MoS2-based nanoprobes for homogeneous detection of biomolecules. J Am Chem Soc 135(16):5998–6001

    Article  CAS  Google Scholar 

  30. Chen W, Santos E J G, Zhu W, Kaxiras E, Zhang Z (2013) Tuning the electronic and chemical properties of monolayer MoS2 adsorbed on transition metal substrates. Nano Lett 13(2):509– 514

    Article  CAS  Google Scholar 

  31. Ou J Z, Chrimes A F, Wang Y, Tang S Y, Strano M S, Kalantar-Zadeh K (2014) Ion-driven photoluminescence modulation of quasi-twodimensional MoS2 nanoflakes for applications in biological systems. Nano Lett 14(2):857–863

    Article  CAS  Google Scholar 

  32. Xu H, He D, Fu M, Wang W, Wu H, Wang Y (2014) Optical identification of MoS2/graphene heterostructure on SiO2/Si substrate. Opt Express 22(13):15969

    Article  Google Scholar 

  33. Maurya J B, Prajapati Y K, Singh V, Saini J P, Tripathi R (2015) Performance of graphene–mos2 based surface plasmon resonance sensor using silicon layer. Opt Quant Electron 47(11):3599– 3611

    Article  CAS  Google Scholar 

  34. Maurya J B, Prajapati Y K, Singh V, Saini J P (2015) Sensitivity enhancement of surface plasmon resonance sensor based on graphene–MoS2 hybrid structure with TiO2–SiO2 composite layer. Appl Phys A 121 (2):525–533

    Article  CAS  Google Scholar 

  35. Euzéby J P (1997) List of bacterial names with standing in nomenclature: a folder available on the Internet. Int J Syst Bacteriol 47(2):590–592

    Article  Google Scholar 

  36. Jenkins A T A, Buckling A, Clarke D J, Jarvis K (2004) Study of the attachment of Pseudomonas aeruginosa on Gold and modified Gold surfaces using surface plasmon resonance. Biotechnol Prog 20(4):1233–1236

    Article  CAS  Google Scholar 

  37. Barnett A, Goldys E M (2010) Modeling of the SPR resolution enhancement for conventional and nanoparticle inclusive sensors by using statistical hypothesis testing. Opt Express 18(9):9384–9397

    Article  Google Scholar 

  38. Bruna M, Borini S (2009) Optical constants of graphene layers in the visible range. Appl Phys Lett 94 (3):031901

    Article  Google Scholar 

  39. Yamamoto M (2002) Surface plasmon resonance (SPR) theory: tutorial. Rev Polarography 48:209

    Article  Google Scholar 

  40. Pockrand I (1978) Surface plasma oscillations at silver surfaces with thin transparentand absorbing coatings. Surf Sci 72:577– 588

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. K. Prajapati.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maurya, J.B., Prajapati, Y.K. & Tripathi, R. Effect of Molybdenum Disulfide Layer on Surface Plasmon Resonance Biosensor for the Detection of Bacteria. Silicon 10, 245–256 (2018). https://doi.org/10.1007/s12633-016-9431-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-016-9431-y

Keywords

Navigation