Skip to main content

Advertisement

Log in

Structural, microstructural, and thermal characterizations of a chalcopyrite concentrate from the Singhbhum shear zone, India

  • Published:
International Journal of Minerals, Metallurgy, and Materials Aims and scope Submit manuscript

Abstract

The structural and morphological characterizations of a chalcopyrite concentrate, collected from the Indian Copper Complex, Ghatshila, India, were carried out by X-ray diffraction, scanning electron microscopy, and energy-dispersive X-ray spectroscopy. The concentrate powder was composed mainly of free chalcopyrite and low quartz in about 3:1 weight ratio. The particle size was about 100 μm. Spectroscopic studies (FTIR, Raman, UV-visible) of the concentrate supported the XRD findings, and also revealed a marginal oxidation of the sulfide phase. The energy band gap of the sulfide was found to be 3.4 eV. Differential thermal analysis and thermogravimetry of the concentrate showed a decomposition of chalcopyrite at 658 K with an activation energy of 208 kJ·mol−1, and two successive structural changes of silica at 848 K and 1145 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W.D. Nesse, Introduction to Mineralogy, Oxford University Press, Oxford, 2000, p. 1.

    Google Scholar 

  2. A.A. Baba, K.I. Ayinla, F.A. Adekola, R.B. Bale, M.K. Ghosh, A.G.F. Alabi, A.R. Sheik, and I.O. Folorunso, Hydrometallurgical application for treating a Nigerian chalcopyrite ore in chloride medium: Part I. Dissolution kinetics assessment, Int. J. Miner. Metall. Mater., 20(2013), No. 11, p. 1021.

    Article  Google Scholar 

  3. R. Chatterjee and D. Ghosh, Characterization of Cu-SiO2 composite synthesized by hydrogen reduction of chalcopyrite concentrate followed by acid leaching, Metall. Mater. Trans. B, 44(2013), No. 5, p. 1049.

    Article  Google Scholar 

  4. A.A. Baba, K.I. Ayinla, F.A. Adekola, M.K. Ghosh, O.S. Ayanda, R.B. Bale, A.R. Sheik, and S.R. Pradhan, A review on novel techniques for chalcopyrite ore processing, Int. J. Min. Eng. Miner. Process., 1(2012), No. 1, p. 1.

    Article  Google Scholar 

  5. A. Le Bail, H. Duroy, and J.L. Fourquet, Ab-initio structure determination of LiSbWO6 by X-ray powder diffraction, Mater. Res. Bull., 23(1988), No. 3, p. 447.

    Article  Google Scholar 

  6. V. Petricek, M. Dusek, and L. Palatinus, JANA2006 The Crystallographic Computing System, Institute of Physics, Praha, Czech Republic, 2011.

    Google Scholar 

  7. P. Baláž, Mechanochemistry in Nanoscience and Minerals Engineering, Springer Berlin Heidelberg, 2008, p. 136.

    Google Scholar 

  8. K. Omori, Science Reports, 3rd Ser., Vol.9, No.1, Tohoku University, 1964, p. 65.

    Google Scholar 

  9. K. Omori, Science Reports, Vol.7, Tohoku University, 1961, p.101.

    Google Scholar 

  10. J. Leppinen, FTIR and flotation investigation of the adsorption of ethyl xanthate on activated and non-activated sulfide minerals, Int. J. Miner. Process., 30(1990), No. 3–4, p. 245.

    Article  Google Scholar 

  11. D.H. Sepehrian, A.R. Khanchi, M.K. Rofouei, and S.W. Husain, Non-thermal synthesis of mesoporous zirconium silicate and its characterization, J. Iran. Chem. Soc., 3(2006), p. 253.

    Article  Google Scholar 

  12. J.A. Gadsen, Infrared Spectra of Minerals and Related Inorganic Compounds, Butterworths, London, 1975, p. 46.

    Google Scholar 

  13. T. Ishizaki, N. Saito, Y. Inoue, M. Bekke, and O. Takai, Fabrication and characterization of ultra-water-repellent alumina-silica composite films, J. Phys. D., 40(2007), p. 192.

    Article  Google Scholar 

  14. A. Beran, G. Giester, and E. Libowitzky, The hydrogen bond system in natrochalcite-type compounds: an FTIR spectroscopic study of the H3O2 unit, Mineral. Petrol., 61(1997), No. 1–4, p. 223.

    Article  Google Scholar 

  15. X. Fontané, L. Calvo-Barrio, V. Izquierdo-Roca, E. Saucedo, A. Pérez-Rodriguez, J.R. Morante, D.M. Berg, P.J. Dale, and S. Siebentritt, In-depth resolved Raman scattering analysis for the identification of secondary phases: characterization of Cu2ZnSnS4 layers for solar cell applications, Appl. Phys. Lett., 98(2011), No. 18, art. No. 181905.

    Google Scholar 

  16. G. Udayabhaskar Reddy, K. Seshamaheswaramma, Y. Nakamura, S. Lakshmi Reddy, R.L. Frost, and T. Endo, Electron paramagnetic resonance, optical absorption and Raman spectral studies on a pyrite/chalcopyrite mineral, Spectrochim. Acta Part A, 96(2012), p. 310.

    Article  Google Scholar 

  17. G.A. Ozin, The single-crystal Raman spectrum of rhombic sulphur, J. Chem. Soc. A, (1969), p. 116.

    Google Scholar 

  18. P.D. Harvey and I.S. Butler, Raman spectra of orthorhombic sulfur at 40 K, J. Raman Spectrosc., 17(1986), No. 4, p. 329.

    Article  Google Scholar 

  19. P. Gillet, A. Le Cléac’h, and M. Madon, High-temperature Raman spectroscopy of SiO2 and GeO2 polymorphs: anharmonicity and thermodynamic properties at high-temperatures, J. Geophys. Res., 95(1990), No. B13, p. 21635.

    Article  Google Scholar 

  20. R.J. Hemley, Pressure dependence of Raman spectra of SiO2 polymorphs: alpha-quartz, coesite and stishovite, [in] High-Pressure Research in Mineral Physics: a Volume in Honor of Syun-iti Akimoto, American Geophysical Union, 2013, p.347.

    Google Scholar 

  21. S.D. Disale and S.S. Garje, A convenient synthesis of nanocrystalline chalcopyrite, CuFeS2 using single-source precursors, Appl. Organomet. Chem., 23(2009), No. 12, p. 492.

    Article  Google Scholar 

  22. B. Prameena, G. Anbalagan, S. Gunasekaran, G.R. Ramkumaar, and B. Gowtham, Structural, optical, electron paramagnetic, thermal and dielectric characterization of chalcopyrite, Spectrochim. Acta Part A, 122(2014), p. 348.

    Article  Google Scholar 

  23. D.M. Sherman and T.D. Waite, Electronic spectra of Fe3+ oxides and oxide hydroxides in the near IR to near UV, Am. Mineral., 70(1985), No. 11–12, p. 1262.

    Google Scholar 

  24. A. Roine, Outokumpu HSC Chemistry for Windows: Chemical Reaction and Equilibrium Software with Extensive Thermochemical Database, Pori, Finland, 1999.

    Google Scholar 

  25. H. Okamoto, O-Si (oxygen-silicon), J. Phase Equilib.Diffus., 28(2007), p. 309.

    Article  Google Scholar 

  26. S. Kim and J.K. Park, Characterization of thermal reaction by peak temperature and height of DTG curves, Thermochim. Acta, 264(1995), p. 137.

    Article  Google Scholar 

  27. J.H. Flynn and L.A. Wall, General treatment of the thermogravimetry of polymers, J. Res. Natl. Bur. Stand., 70A(1966), No. 6, p. 487.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ritayan Chatterjee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chatterjee, R., Chaudhuri, S., Kuila, S.K. et al. Structural, microstructural, and thermal characterizations of a chalcopyrite concentrate from the Singhbhum shear zone, India. Int J Miner Metall Mater 22, 225–232 (2015). https://doi.org/10.1007/s12613-015-1065-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-015-1065-3

Keywords

Navigation