Skip to main content
Log in

Genome Sequencing and Analysis of Bacillus pumilus ICVB403 Isolated from Acartia tonsa Copepod Eggs Revealed Surfactin and Bacteriocin Production: Insights on Anti-Staphylococcus Activity

  • Published:
Probiotics and Antimicrobial Proteins Aims and scope Submit manuscript

Abstract

Here we show that Bacillus pumilus ICVB403 recently isolated from copepod eggs is able to produce, after 48–72 h of growth in Landy medium, extracellular inhibitory compounds, which are active against Staphylococcus aureus ATCC 25923, methicillin-resistant S. aureus (MRSA) ATCC 43300, MRSA-S1, Staphylococcus epidermidis 11EMB, Staphylococcus warneri 27EMB, and Staphylococcus hominis 13EMB. Moreover, these extracellular inhibitory compound(s) were able to potentiate erythromycin against the aforementioned staphylococci. The minimum inhibitory concentration (MIC) of erythromycin was reduced from 32 μg/mL to 8 μg/mL for MRSA ATCC 43300 and MRSA SA-1 strains, and from 32–64 μg/mL to 4 μg/mL for S. epidermidis 11EMB and S. hominis 13EMB strains.

The genome sequencing and analysis of B. pumilus ICVB403 unveiled 3.666.195 nucleotides contained in 22 contigs with a G + C ratio of 42.0%, 3.826 coding sequences, and 73 RNAs. In silico analysis guided identification of two putative genes coding for synthesis of surfactin A, a lipopeptide with 7 amino acids, and for a circular bacteriocin belonging to the circularin A/uberolysin family, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Huss HH (2004) Fresh fish quality and quality changes. In: FAO Fisheries Technical Paper No. 348. Food and Agriculture Organization of the United Nations, Rome, Italy, pp 103–109

    Google Scholar 

  2. Food and Agriculture Organization of the United Nations/World Health Organization (FAO/WHO) (2016) La situation mondiale des pêches et aquaculture.

  3. Biji KB, Ravishankar CN, Venkateswarlu R, Mohan CO, Gopal TK (2016) Biogenic amines in seafood: a review. J Food Sci Technol 53(5):2210–2218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Rambla-Alegre M, Miles CO, de la Iglesia P, Fernandez-Tejedor M, Jacobs S, Sioen I, Verbeke W, Samdal IA, Sandvik M, Barbosa V, Tediosi A, Madorran E, Granby K, Kotterman M, Calis T, Diogene J (2018) Occurrence of cyclic imines in European commercial seafood and consumers risk assessment. Environ Res 161:392–398

    Article  CAS  PubMed  Google Scholar 

  5. Davis AR, Rabinson B (2003) Incidence of food borne pathogens on European fish. Food Control 12:67–71

    Article  Google Scholar 

  6. Hosseini H, Misaghi A (2004) Incidence of Vibrio spp. in seafood caught of south coast of Iran. Food Control 8:91–98

    Google Scholar 

  7. Chintagari S, Hazard N, Edwards G, Jadeja R, Janes M (2017) Risks associated with fish and seafood. Microbiol Spectr 5(1). https://doi.org/10.1128/microbiolspec.PFS-0013-2016.

  8. Elbashir S, Parveen S, Schwarz J, Rippen T, Jahncke M, DePaola A (2018) Seafood pathogens and information on antimicrobial resistance: a review. Food Microbiol 70:85–93

    Article  CAS  PubMed  Google Scholar 

  9. Nayak SK (2010) Probiotics and immunity: a fish perspective. Fish Shellfish Immunol 29:2–14

    Article  CAS  PubMed  Google Scholar 

  10. Wang AR, Ran C, Ringo E, Zhou ZG (2017) Progress in fish gastrointestinal microbiota research. Rev Aquacul 2017:626–640. https://doi.org/10.1111/raq.12191

    Article  Google Scholar 

  11. Feldhusen F (2004) The role of seafood in bacterial food borne diseases. Microbes Infect 2:1651–1660

    Article  Google Scholar 

  12. Edwards AM, Massey RC, Clarke SR (2012) Molecular mechanisms of Staphylococcus aureus nasopharyngeal colonization. Mol Oral Microbiol 27:1–10

    Article  CAS  PubMed  Google Scholar 

  13. Atyah MA, Zamri-Saad M, Siti-Zahrah A (2010) First report of methicillin-resistant Staphylococcus aureus from cage-cultured tilapia (Oreochromis niloticus). Vet Microbiol 144:502–504

    Article  CAS  PubMed  Google Scholar 

  14. Soliman MK, Ellakany HF, Gaafar AY, Elbialy AK, Zaki MS,Younes AM (2014) Epidemiology and antimicrobial activity of methicillin-resistant Staphylococcus aureus (MRSA) isolated from Nile tilapia (Oreochromis niloticus) during an outbreak in Egypt. Life Sci J 11(10):1245–1252

  15. Arfatahery N, Mirshafiey A, Abedimohtasab TP, Zeinolabedinizamani M (2015) Study of the prevalence of Staphylococcus aureus in marine and farmed shrimps in Iran aiming the future development of a prophylactic vaccine. Procedia Vaccinol 9:44–49

    Article  Google Scholar 

  16. Pridgeon J, Klesius PH (2012) Major bacterial diseases in aquaculture and their vaccine development. CAB Reviews 2012(048)

  17. Rigos G, Troisi GM (2005) Antibacterial agents in Mediterranean finfish farming: a synopsis of drug pharmacokinetics in important euryhaline fish species and possible environmental implications. Rev Fish Biol Fisher 15(1–2):53–73

    Article  Google Scholar 

  18. Reda RM, Ibrahim RE, Ahmed ENG, El-Bouhy ZM (2013) Effect of oxytetracycline and florfenicol as growth promoters on the health status of cultured Oreochromis niloticus. Egypt J Aquat Res 39(4):241–248

    Article  Google Scholar 

  19. Chanu KV, Thakuria D, Kumar S (2018) Antimicrobial peptides of buffalo and their role in host defenses. Veterinary world 11:192–200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Gomez-Gil B, Roque A, Turnbull JF (2000) The use and selection of probiotic bacteria for use in the culture of larval aquatic organisms. Aquaculture 191:259–270

    Article  Google Scholar 

  21. Carlet J, Jarlier V, Harbarth S, Voss A, Goossens H, Pittet D (2012) Ready for a world without antibiotics? The pensières antibiotic resistance call to action. Antimicrob Resist Infect Control 14:1–11

    Google Scholar 

  22. Drider D, Rebufat S (2011) Prokarytotic antimicrobial peptides: from genes to applications. Springers Editions NY-USA 2011. 451pp

  23. Abriouel H, Franz CM, Omar NB, Gálvez A (2011) Diversity and applications of Bacillus bacteriocins. FEMS Microbiol Rev 35:201–232

    Article  CAS  PubMed  Google Scholar 

  24. Mondol MAM, Shin HJ, Islam MT (2013) Diversity of secondary metabolites from marine Bacillus species: chemistry and biological activity. Mar Drugs 11(8):2846–2872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Naghmouchi K, Belguesmia Y, Baah J, Teather R, Drider D (2011) Antibacterial activity of class I and IIa bacteriocins combined with polymyxin E against resistant variants of Listeria monocytogenes and Escherichia coli. Res Microbiol 162(2):99–107

    Article  CAS  PubMed  Google Scholar 

  26. Naghmouchi K, Baah J, Hober D, Jouy E, Rubrecht C, Sané F, Drider D (2013) Synergistic effect between colistin and bacteriocins in controlling Gram-negative pathogens and their potential to reduce antibiotic toxicity in mammalian epithelial cells. Antimicrob Agents Chemother 57(6):2719–2725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zidour M, Chevalier M, Belguesmia Y, Cudennec B, Grard T, Drider D, Souissi S, Flahaut C (2017) Isolation and characterization of bacteria colonizing Acartia tonsa copepod eggs and displaying antagonist effects against Vibrio anguillarum, Vibrio alginolyticus and other pathogenic strains. Front Microbial 8:1919

    Article  Google Scholar 

  28. Drago L, Mattina R, Nicola L, Rodighiero V, De Vecchi E (2011) Macrolide resistance and in vitro selection of resistance to antibiotics in Lactobacillus isolates. J Microbiol 49:651–656. https://doi.org/10.1007/s12275-011-0470-1

    Article  CAS  PubMed  Google Scholar 

  29. The European Committee on Antimicrobial Susceptibility Testing (2018) Breakpoint tables for interpretation of MICs and zone diameters, version 8.0, 2018. http://www.eucast.org/clinical_breakpoints/

  30. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, Edwards RA, Formsma K, Gerdes S, Glass EM, Kubal M, Meyer F, Olsen GJ, Olson R, Osterman AL, Overbeek RA, McNeil LK, Paarmann D, Paczian T, Parrello B, Pusch GD, Reich C, Stevens R, Vassieva O, Vonstein V, Wilke A, Zagnitko O (2008) The RAST server: rapid annotations using subsystems technology. BMC Genomics 9:75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Overbeek R, Begley T, Butler RM, Choudhuri JV, Chuang HY, Cohoon M, de Crécy-Lagard V, Diaz N, Disz T, Edwards R, Fonstein M, Frank ED, Gerdes S, Glass EM, Goesmann A, Hanson A, Iwata-Reuyl D, Jensen R, Jamshidi N, Krause L, Kubal M, Larsen N, Linke B, McHardy AC, Meyer F, Neuweger H, Olsen G, Olson R, Osterman A, Portnoy V, Pusch GD, Rodionov DA, Rückert C, Steiner J, Stevens R, Thiele I, Vassieva O, Ye Y, Zagnitko O, Vonstein V (2005) The subsystems approach to genome annotation and its use in the project to annotate 1000 genomes. Nucleic Acids Res 33:5691–5702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Weber T, Blin K, Duddela S, Krug D, Kim HU, Bruccoleri R, Bruccoleri R, Lee SY, Fischbach MA, Müller R, Wohlleben W, Breitling R, Takano E, Medema MH (2015) antiSMASH 3.0—a comprehensive resource for the genome mining of biosynthetic gene clusters. Nucleic Acids Res 43(W1):W237–W243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Berkeley R, Heyndrickx M, Logan N, De Vos P (2008) Applications and systematics of Bacillus and relatives. Wiley-Blackwell, Hoboken 133 pp

    Google Scholar 

  34. Liu Y, Lai Q, Dong C, Sun F, Wang L, Li G, Shao Z (2013) Phylogenetic diversity of the Bacillus pumilus group and the marine ecotype revealed by multilocus sequence analysis. PLoS One 8:e80097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Miranda CA, Martins OB, Clementino MM (2008) Species-level identification of Bacillus strains isolates from marine sediments by conventional biochemical, 16S rRNA gene sequencing and inter-tRNA gene sequence lengths analysis. Antonie Van Leeuwenhoek 93:297–304

    Article  CAS  PubMed  Google Scholar 

  36. Ettoumi B, Raddadi N, Borin S, Daffonchio D, Boudabous A, Cherif A (2009) Diversity and phylogeny of culturable spore-forming bacilli isolated from marine sediments. J Basic Microbiol 49(Suppl 1):S13

    Article  PubMed  Google Scholar 

  37. Bhate DS (1955) Pumilin, a new antibiotic from Bacillus pumilus. Nature 175(4462):816–817

    Article  CAS  PubMed  Google Scholar 

  38. Brack C, Mikolasch A, Schlueter R, Otto A, Becher D, Wegner U, Albrecht D, Riedel K, Schauer F (2015) Antibacterial metabolites and bacteriolytic enzymes produced by Bacillus pumilus during bacteriolysis of Arthrobacter citreus. Mar Biotechnol (NY) 17:290–304

    Article  CAS  Google Scholar 

  39. Kalinovskaya NI, Kuznetsova TA, Ivanova EP, Romanenko LA, Voinov VG, Huth F, Laatsch H (2002) Characterization of surfactin-like cyclic depsipeptides synthesized by Bacillus pumilus from ascidian Halocynthia aurantium. Mar Biotechnol (NY). 4:179–188

    Article  CAS  PubMed  Google Scholar 

  40. Aunpad R, Na-Bangchang K (2007) Pumilicin 4, a novel bacteriocin with anti-MRSA and anti-VRE activity produced by newly isolated bacteria Bacillus pumilus strainWAPB4. Curr Microbiol 55:308–313

    Article  CAS  PubMed  Google Scholar 

  41. Ismail-Ben Ali A, El Bour M, Ktari L, Bolhuis H, Ahmed M, Boudabbous A, Stal LJ (2012) Jania rubens associated bacteria, molecular identification and antimicrobial activity. J Appl Phycol 24:525–534

    Article  CAS  Google Scholar 

  42. Olmos J, Paniagua-Michel J (2014) Bacillus subtilis a potential probiotic bacterium to formulate functional feeds for aquaculture. J Microb Biochem Technol 6:361–365

    Article  CAS  Google Scholar 

  43. Sreenivasulu P, Suman Joshi DSD, Narendra K, Venkata Rao G, Krishna Satya A (2016) Bacillus pumilus as a potential probiotic for shrimp culture. Int J Fish Aquat Stud 4:107–110

    Google Scholar 

  44. Prieto ML, O’Sullivan L, Tan SP, McLoughlin P, Hughes H, Gutierrez M, Lane JA, Hickey RM, Lawlor PG, Gardiner GE (2014) In vitro assessment of marine Bacillus for use as livestock probiotics. Mar Drugs 12:2422–2445

    Article  PubMed  PubMed Central  Google Scholar 

  45. Landy M, Warren GH, Roseman SB, Golio LG (1948) Bacillomycin, an antibiotic from Bacillus subtilis active against pathogenic fungi. Proc Soc Exp Biol Med 67:539–541

    Article  CAS  PubMed  Google Scholar 

  46. Naruse N, Tenmyo O, Kobaru S, Kamei H, Miyaki T, Konishi M, Oki T (1990) Pumilacidin, a complex of new antiviral antibiotics. Production, isolation, chemical properties, structure and biological activity. J Antibiot (Tokyo) 43:267–280

    Article  CAS  Google Scholar 

  47. Grangemard I, Peypoux F, Wallach J, Das BC, Labbé H, Caille A, Genest M, Maget-Dana R, Ptak M, Bonmatin JM (1997) Lipopeptides with improved properties: structure by NMR, purification by HPLC and structure-activity relationships of new isoleucyl-rich surfactins. J Pept Sci 3:145–154

    Article  CAS  PubMed  Google Scholar 

  48. Jemil N, Manresa A, Rabanal F, Ben Ayed H, Hmidet N, Nasri M (2017) Structural characterization and identification of cyclic lipopeptides produced by Bacillus methylotrophicus DCS1 strain. J Chromatogr B Analyt Technol Biomed Life Sci 1060:374–386

    Article  CAS  PubMed  Google Scholar 

  49. Arima K, Kakinuma A, Tamura G (1968) Surfactin, a crystalline peptidelipid surfactant produced by Bacillus subtilis: isolation, characterization and its inhibition of fibrin clot formation. Biochem Biophys Res Commun 31:488–494

    Article  CAS  PubMed  Google Scholar 

  50. Chen H, Wang L, Su CX, Gong GH, Wang P, Yu ZL (2008) Isolation and characterization of lipopeptide antibiotics produced by Bacillus subtilis. Lett Appl Microbiol 47:180–186

    Article  CAS  PubMed  Google Scholar 

  51. Ndlovu T, Rautenbach M, Vosloo JA, Khan S, Khan W (2017) Characterisation and antimicrobial activity of biosurfactant extracts produced by Bacillus amyloliquefaciens and Pseudomonas aeruginosa isolated from a wastewater treatment plant. AMB Express 7:108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Perez KJ, Viana J, dos S, Lopes FC, Pereira JQ, dos Santos DM, Oliveira JS, Velho RV, Crispim SM, Nicoli JR, Brandelli A, Nardi RMD (2017) Bacillus spp. isolated from Puba as a source of biosurfactants and antimicrobial lipopeptides. Front Microbiol 8:61

    PubMed  PubMed Central  Google Scholar 

  53. Kawai Y, Kemperman R, Kok J, Saito T (2004) The circular bacteriocins gassericin a and circularin a. Curr Protein Pept Sci 5:393–398

    Article  CAS  PubMed  Google Scholar 

  54. Wirawan RE, Swanson KM, Kleffmann T, Jack RW, Tagg JR (2007) Uberolysin: a novel cyclic bacteriocin produced by Streptococcus uberis. Microbiology 153:1619–1630

    Article  CAS  PubMed  Google Scholar 

  55. Gálvez A, Maqueda M, Valdivia E, Quesada A, Montoya E (1986) Characterization and partial purification of a broad spectrum antibiotic AS-48 produced by Streptococcus faecalis. Can J Microbiol 32:765–771

    Article  PubMed  Google Scholar 

  56. Martin-Visscher LA, van Belkum MJ, Garneau-Tsodikova S, Whittal RM, Zheng J, McMullen LM, Vederas JC (2008) Isolation and characterization of carnocyclin A, a novel circular bacteriocin produced by Carnobacterium maltaromaticum UAL307. Appl Environ Microbiol 74:4756–4763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Ananou S, Valdivia E, Martínez Bueno M, Gálvez A, Maqueda M (2004) Effect of combined physico-chemical preservatives on enterocin AS-48 activity against the enterotoxigenic Staphylococcus aureus CECT 976 strain. J Appl Microbiol 97:48–56

    Article  CAS  PubMed  Google Scholar 

  58. Arslan S, Özdemir F (2017) Molecular characterization and detection of enterotoxins, methicillin resistance genes and antimicrobial resistance of Staphylococcus aureus from fish and ground beef. Pol J Vet Sci 20:85–94

    Article  CAS  PubMed  Google Scholar 

  59. Rios AC, Moutinho CG, Pinto FC, Del Fiol FS, Jozala A, Chaud MV, Vila MM, Teixeira JA, Balcão VM (2016) Alternatives to overcoming bacterial resistances: state-of-the-art. Microbiol Res 191:51–80

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Dr. Matthieu Duban and Dr. Gabrielle Chataîgnée for their helpful assistance in the genome analysis and mass spectrometry analysis. We thank past and present members of the group of LOG COPEFISH team (SS) for their involvement in maintaining several cultures of copepods and algae and the Communauté d’Agglomération du Boulonnais (CAB) for supporting the implementation of a copepod-rearing pilot project (agreement Lille University-CAB).

Funding

This work is partly supported by CPER/FEDER Alibiotech grant (2016-2020) from la Région des Hauts-de-France. This work is a contribution to the project CPER 2014-2020 MARCO funded by the French government and the region Hauts-de-France.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yanath Belguesmia or Djamel Drider.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

All authors of this paper have read and approved the final version submitted. The contents of this manuscript have not been copyrighted or published previously. No procedures performed in these studies have been conducted in human participants and/or animals.

Electronic supplementary material

ESM 1

(DOCX 191 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zidour, M., Belguesmia, Y., Cudennec, B. et al. Genome Sequencing and Analysis of Bacillus pumilus ICVB403 Isolated from Acartia tonsa Copepod Eggs Revealed Surfactin and Bacteriocin Production: Insights on Anti-Staphylococcus Activity. Probiotics & Antimicro. Prot. 11, 990–998 (2019). https://doi.org/10.1007/s12602-018-9461-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12602-018-9461-4

Keywords

Navigation