Skip to main content
Log in

Brazilian Kefir-Fermented Sheep’s Milk, a Source of Antimicrobial and Antioxidant Peptides

  • Published:
Probiotics and Antimicrobial Proteins Aims and scope Submit manuscript

Abstract

Fermented milks are a source of bioactive peptides and may be considered as functional foods. Among these, sheep’s milk fermented with kefir has not been widely studied and its most relevant properties need to be more thoroughly characterized. This research study is set out to investigate and evaluate the antioxidant and antimicrobial properties of peptides from fermented sheep’s milk in Brazil when produced by using kefir. For this, the chemical and microbiological composition of the sheep’s milk before and after the fermentation was evaluated. The changes in the fermented milk and the peptides extracted before the fermentation and in the fermented milk during its shelf life were verified. The antimicrobial and antioxidant activities of the peptides from the fermented milk were evaluated and identified according to the literature. The physicochemical properties and mineral profile of the fermented milk were like those of fresh milk. The peptide extract presented antimicrobial activity and it was detected that 13 of the 46 peptides were able to inhibit the growth of pathogenic microorganisms. A high antioxidant activity was observed in the peptides extracted from fermented milk (3.125 mg/mL) on the 28th day of storage. Two fractions displayed efficient radical scavenging properties by DPPH and ABTS methods. At least 11 peptides distributed in the different fractions were identified by tandem mass spectrometry. This sheep’s milk fermented by Brazilian kefir grains, which has antioxidant and antimicrobial activities and probiotic microorganisms, is a good candidate for further investigation as a source for bioactive peptides. The fermentation process was thus a means by which to produce potential bioactive peptides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. John S M, Deeseenthum S (2015) Properties and benefits of kefir—a review. Songklanakarin J Sci Technol 37: 275–282

  2. Irigoyen A, Arana I, Castiella M et al (2005) Microbiological, physicochemical, and sensory characteristics of kefir during storage. Food Chem 90(4):613–620. https://doi.org/10.1016/j.foodchem.2004.04.021

    Article  CAS  Google Scholar 

  3. Satir G, Seydim G (2016) How kefir fermentation can affect product composition? Small Rumin Res 134:1–7

    Article  Google Scholar 

  4. Miguel MGCP, Cardoso PG, Lago LA, Schwan RF (2010) Diversity of bacteria present in milk kefir grains using culture-dependent and culture-independent methods. Food Res Int 43(5):1523–1528. https://doi.org/10.1016/j.foodres.2010.04.031

    Article  Google Scholar 

  5. Nielsen B, Gurakan GC, Unlu G (2014) Kefir: a multifaceted fermented dairy product. Probiotics Antimicrob Proteins 6:123–135

    Article  CAS  PubMed  Google Scholar 

  6. Ebner J, Ayşe AA, Fedorova M et al (2015) Peptide profiling of bovine kefir reveals 236 unique peptides released from caseins during its production by starter culture or kefir grains. J Proteomics 117:41–57

    Article  CAS  PubMed  Google Scholar 

  7. Cogulu D, Topaloglu-Ak A, Caglar E, Sandalli N, Karagozlu C, Ersin N, Yerlikaya O (2010) Potential effects of a multistrain probiotic-kefir on salivary Streptococcus mutans and Lactobacillus spp. J Dent Sc 5(3):144–149. https://doi.org/10.1016/S1991-7902(10)60021-9

    Article  Google Scholar 

  8. Fahmy HA, Ismail AFM (2015) Gastroprotective effect of kefir on ulcer induced in irradiated rats. J Photochem Photobiol B 144:85–93. https://doi.org/10.1016/j.jphotobiol.2015.02.009

    Article  CAS  PubMed  Google Scholar 

  9. Bekar O, Yilmaz Y, Gulten M (2011) Kefir improves the efficacy and tolerability of triple therapy in eradicating Helicobacter pylori. J Med Food 14(4):344–347. https://doi.org/10.1089/jmf.2010.0099

    Article  CAS  PubMed  Google Scholar 

  10. Thoreux K, Schmucker DL (2001) Kefir milk enhances intestinal immunity in young but not old rats. J Nutr 13:807–812

    Article  Google Scholar 

  11. Urdaneta E, Barrenetxe J, Aranguren P, Irigoyen A, Marzo F, Ibáñez FC (2007) Intestinal beneficial effects of kefir-supplemented diet in rats. Nutr Res 27(10):653–658. https://doi.org/10.1016/j.nutres.2007.08.002

    Article  CAS  Google Scholar 

  12. Franco MC, Golowczyc MA, De Antoni GL, Perez PF, Humen M, Serradell MA (2013) Administration of kefir-fermented milk protects mice against Giardia intestinalis infection. J Med Microbiol 62(Pt_12):1815–1822. https://doi.org/10.1099/jmm.0.068064-0

    Article  CAS  PubMed  Google Scholar 

  13. Friques AGF, Arpini CM, Kalil IC, Gava AL, Leal MA, Porto ML, Nogueira BV, Dias AT, Andrade TU, Pereira TMC, Meyrelles SS, Campagnaro BP, Vasquez EC (2015) Chronic administration of the probiotic kefir improves the endothelial function in spontaneously hypertensive rats. J Transl Med 13(1):390. https://doi.org/10.1186/s12967-015-0759-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Li Y, Sadiq FA, Liu T et al (2015) Purification and identification of novel peptides with inhibitory effect against angiotensin I-converting enzyme and optimization of process conditions in milk fermented with the yeast Kluyveromyces marxianus. J Funct Foods 16:278–288

    Article  CAS  Google Scholar 

  15. Chifíriuc MC, Cioaca AB, Lazar V (2011) In vitro assay of the antimicrobial activity of kephir against bacterial and fungal strains. Anaerobe 17:433–435

    Article  PubMed  Google Scholar 

  16. Liu JR, Chen MJ, Lin CW (2005) Antimutagenic and antioxidant properties of milk−kefir and soymilk−kefir. J Agric Food Chem 53(7):2467–2474

    Article  CAS  PubMed  Google Scholar 

  17. Papadimitriou CG, Vafopoulou-Mastrojiannaki A, Silva SV et al (2007) Identification of peptides in traditional and probiotic sheep milk yoghurt with angiotensin I-converting enzyme (ACE)-inhibitory activity. Food Chem 105(2):647–656. https://doi.org/10.1016/j.foodchem.2007.04.028

    Article  CAS  Google Scholar 

  18. Politis I, Theodorou G (2016) Angiotensin I-converting (ACE)-inhibitory and anti-inflammatory properties of commercially available Greek yoghurt made from bovine or ovine milk: a comparative study. Int Dairy J 58:46–49

    Article  CAS  Google Scholar 

  19. Korhonen H, Pihlanto A (2007) Technological options for the production of health-promoting proteins and peptides derived from milk and colostrum. Curr Pharm Des 13:8429–8434

    Article  Google Scholar 

  20. Dallas DC, Citerne F, Tian T et al (2016) Peptidomic analysis reveals proteolytic activity of kefir microorganisms on bovine milk proteins. Food Chem 197:273–284

    Article  CAS  PubMed  Google Scholar 

  21. Rahmawatia IS, Suntornsuk B (2016) Effects of fermentation and storage on bioactive activities in milks and yoghurts. Procedia Chem 18:53–62

    Article  Google Scholar 

  22. Akalin AS (2014) Dairy-derived antimicrobial peptides: action mechanisms, pharmaceutical uses and production proposals. Trends Food Sci Tech 36(2):79–95. https://doi.org/10.1016/j.tifs.2014.01.002

    Article  CAS  Google Scholar 

  23. AOAC (2002) Official methods of analysis of the Association of Official Analytical Chemists. AOAC International, Washington

    Google Scholar 

  24. Santos DM, Pedroso MM, Costa LM et al (2005) A new procedure for bovine milk digestion in a focused microwave oven: gradual sample addition to pre-heated acid. Talanta 65(2):505–510. https://doi.org/10.1016/j.talanta.2004.07.013

    Article  CAS  PubMed  Google Scholar 

  25. Grønnevik H, Falstad M, Narvhus JA (2011) Microbiological and chemical properties of Norwegian kefir during storage. Int Dairy J 21:601–606

    Article  Google Scholar 

  26. Pritchard SR, Phillips M, Kailasapathy K (2010) Identification of bioactive peptides in commercial cheddar cheese. Food Res Int 43:1545–1548

    Article  CAS  Google Scholar 

  27. Re R, Pellegrini N, Proteggente A et al (1999) Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med 26:1231–1237

    Article  CAS  Google Scholar 

  28. Silva RA, Lima MSF, Viana JBM, Bezerra VS, Pimentel MCB, Porto ALF, Cavalcanti MTH, Lima Filho JL (2012) Can artisanal “Coalho” cheese from Northeastern Brazil be used as a functional food? Food Chem 135(3):1533–1538. https://doi.org/10.1016/j.foodchem.2012.06.058

    Article  CAS  PubMed  Google Scholar 

  29. Brand-Williams W, Cuvelier ME, Berset C (1995) Use of a free radical method to evaluate antioxidant activity. LWT Food Sci Technol 28(1):25–30. https://doi.org/10.1016/S0023-6438(95)80008-5

    Article  CAS  Google Scholar 

  30. Fukumoto LR, Mazza G (2000) Assessing antioxidant and pro-oxidant activities of phenolic compounds. J Agr Food Chem 48(8):3597–3604

    Article  CAS  Google Scholar 

  31. Moslehishad M, Ehsani MR, Salami M, Mirdamadi S, Ezzatpanah H, Naslaji AN, Moosavi-Movahedi AA (2013) The comparative assessment of ACE-inhibitory and antioxidant activities of peptide fractions obtained from fermented camel and bovine milk by Lactobacillus rhamnosus PTCC 1637. Int Dairy J 29(2):82–87. https://doi.org/10.1016/j.idairyj.2012.10.015

    Article  CAS  Google Scholar 

  32. Pastar I, Tonic I, Golic N et al (2003) Identification and genetic characterization of a novel proteinase, PrtR, from the human isolate Lactobacillus rhamnosus BGT10. Appl Environ Microbiol 69(10):5802–5811. https://doi.org/10.1128/AEM.69.10.5802-5811.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Savijoki K, Ingmer H, Varmanen P (2006) Proteolytic systems of lactic acid bacteria. Appl Microbiol Biotechnol 71(4):394–406. https://doi.org/10.1007/s00253-006-0427-1

    Article  CAS  PubMed  Google Scholar 

  34. Montanuci FD, Garcia S, Prudencio SH (2010) Sensory characterization and acceptance of sweetened full fat and low fat kefir with inulin. Braz J Food Technol 8:79–90

    Google Scholar 

  35. Magalhães KT, Dragone G, Pereira GVM et al (2011) Comparative study of the biochemical changes and volatile compound formations during the production of novel whey-based kefir beverages and traditional milk kefir. Food Chem 126:249–253

    Article  Google Scholar 

  36. Magalhães KT, Pereira GVM, Campos CR, Dragone G, Schwan RF (2011) Brazilian kefir: structure, microbial communities and chemical composition. Braz J Microbiol 42(2):693–702. https://doi.org/10.1590/S1517-83822011000200034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Farvin KHS, Baron CP, Nielsen NS et al (2010) Antioxidant activity of yoghurt peptides: Part 1-in vitro assays and evaluation in ω-3 enriched milk. Food Chem 123(4):1081–1089. https://doi.org/10.1016/j.foodchem.2010.05.067

    Article  CAS  Google Scholar 

  38. Hernández-Ledesma B, Miralles B, Amigo L, Ramos M, Recio I (2005) Identification of antioxidant and ACE-inhibitory peptides in fermented milk. J Sci Food Agr 85(6):1041–1048

    Article  Google Scholar 

  39. Robert MC, Razaname A, Mutter M, Juillerat MA (2004) Identification of angiotensin-I-converting enzyme inhibitory peptides derived from sodium caseinate hydrolysates produced by Lactobacillus helveticus NCC 2765. J Agr Food Chem 52(23):6923–6931

    Article  CAS  Google Scholar 

  40. Ismaiel AA, Ghaly MF, El-Naggar AK (2011) Milk kefir: ultrastructure, antimicrobial activity and efficacy on aflatoxin B1 production by Aspergillus flavus. Curr Microbiol 62(5):1602–1609. https://doi.org/10.1007/s00284-011-9901-9

    Article  CAS  PubMed  Google Scholar 

  41. Virtanen T, Pihlanto A, Akkanen S, Korhonen H (2007) Development of antioxidant activity in milk whey during fermentation with lactic acid bacteria. J Appl Microbiol 102(1):106–115. https://doi.org/10.1111/j.1365-2672.2006.03072.x

    Article  CAS  PubMed  Google Scholar 

  42. Corrêa APF, Daroit DJ, Coelho J et al (2011) Antioxidant, antihypertensive and antimicrobial properties of ovine milk caseinate hydrolyzed with a microbial protease. J. Sci Food Agr 91:2247–2254

    Google Scholar 

  43. Silva SV, Pihlanto A, Malcata FX (2006) Bioactive peptides in ovine and caprine cheese like systems prepared with proteases from Cynara cardunculus. J Dairy Sci 89(9):3336–3344. https://doi.org/10.3168/jds.S0022-0302(06)72370-0

    Article  CAS  PubMed  Google Scholar 

  44. Meira SMM, Daroit DJ, Helfer VE, Corrêa APF, Segalin J, Carro S, Brandelli A (2012) Bioactive peptides in water-soluble extracts of ovine cheeses from Southern Brazil and Uruguay. Food Res Int 48(1):322–329. https://doi.org/10.1016/j.foodres.2012.05.009

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meire dos Santos Falcão de Lima.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Lima, M., da Silva, R.A., da Silva, M.F. et al. Brazilian Kefir-Fermented Sheep’s Milk, a Source of Antimicrobial and Antioxidant Peptides. Probiotics & Antimicro. Prot. 10, 446–455 (2018). https://doi.org/10.1007/s12602-017-9365-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12602-017-9365-8

Keywords

Navigation