Skip to main content
Log in

Comparative Growth Behaviour and Biofunctionality of Lactic Acid Bacteria During Fermentation of Soy Milk and Bovine Milk

  • Published:
Probiotics and Antimicrobial Proteins Aims and scope Submit manuscript

Abstract

The study reports the growth, acidification and proteolysis of eight selected lactic acid bacteria in skim and soy milk. Angiotensin-converting enzyme inhibition and antimicrobial profiles of skim and soy milk fermented by the lactic acid bacteria were also determined. Among eight lactic cultures (S. thermophilus MD2, L. helveticus V3, L. rhamnosus NS6, L. rhamnosus NS4, L. bulgaricus NCDC 09, L. acidophilus NCDC 15, L. acidophilus NCDC 298 and L. helveticus NCDC 292) studied, L. bulgaricus NCDC 09 and S. thermophilus MD2 decreased the pH of skim and soy milk in greater extent. Acid production (i.e. titratable acidity) by L. bulgaricus NCDC 09 and L. helveticus V3 was higher than other strains. Higher viable counts were observed in S. thermophilus MD2 and L. helveticus V3. Higher proteolysis was exhibited by S. thermophilus MD2 and L. rhamnosus NS6 in both skim and soy milk. Milk fermented by S. thermophilus (MD2) exhibited highest angiotensin-converting enzyme inhibition. Antimicrobial activities of cell-free supernatant of milk fermented by S. thermophilus MD2 and L. helveticus V3 were higher. All the tested lactic acid bacteria performed better in skim milk as compared to soy milk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Tsai YT, Cheng PC, Fan CK, Pan TM (2008) Time-dependent persistence of enhanced immune response by a potential probiotic strain Lactobacillus paracasei subsp. Paracasei. Int J Food Microbiol 128:219–225

    Article  CAS  PubMed  Google Scholar 

  2. Kathiriya MR, Prajapati JB, Hati S, Vekariya YV (2016) Significance of growth rate, acceptability of fermented milk and release of peptides by lactic cultures. Journal of Dairy Science and Technology 5(1):31–40

    CAS  Google Scholar 

  3. Angeles AG, Marth EH (1971) Growth and activity of lactic acid bacteria in soymilk. J Milk Food Technol 34:30–36

    Article  CAS  Google Scholar 

  4. Hwa LW, Lavanaya K, Hesseltine CW (1974) Lactic acid fermentation of soybean milk. J Milk Food Technol 37(2):71–73

    Article  Google Scholar 

  5. Omoni AO, Aluko RE (2005) Soybean foods and their benefits: potential mechanisms of action. Nutr Rev 63:272–283

    Article  PubMed  Google Scholar 

  6. Mital BK, Steinkraus KH (1979) Fermentation of soy milk by lactic acid bacteria. J Food Prot 5:848–902

    Google Scholar 

  7. Lawa J, Haandrikmat A (1997) Proteolytic enzymes of lactic acid bacteria. Int. Dairy Journal 7(95):1–1

    Article  Google Scholar 

  8. Meisel H (1997) Biochemical properties of regulatory peptides derived from milk proteins. Biopolymere 43:119–128

    Article  CAS  Google Scholar 

  9. Ariyoshi Y (1993) Angiotensin-converting enzyme inhibitors derived from food proteins. Trends Food Sci Tech 4:139–144

    Article  CAS  Google Scholar 

  10. Koike H, Ito K, Miyamoto M, Nishino H (1980) Effects of long-term blockade of angiotensin-converting enzyme with captopril (SQ 14, 225) on hemodynamics and circulating blood volume in SHR. Hypertension 2:229–303

    Article  Google Scholar 

  11. Donkor ON, Henriksson A, Vasiljevic T, Shah NP (2005) Probiotic strains as starter cultures improve angiotensin-converting enzyme inhibitory activity in soy yoghurt. J Food Sci 70:375–381

    Article  Google Scholar 

  12. Jack RW, Tagg JR, Ray B (1995) Bacteriocins of gram positive bacteria. Microbiology Review 59:171–200

    CAS  Google Scholar 

  13. Montville TJ, Kaiser AL (1993) Antibacterial proteins: classification nomenclature, diversity and relationship to bacteriocin. In: Hoover DG, Steenson LR (eds) Bacteriocins of lactic acid bacteria. Academic press, New York, pp 1–22

    Google Scholar 

  14. Srinivasan P, Khan KA, Perumal UA, Kumar RV, Suganya K, Rajalakshmi M (2012) In vitro antibacterial activity of Lactobacillus plantarum isolated from soy milk. Int J Pharm Bio Sci 3(3):209–219

    CAS  Google Scholar 

  15. Hati S, Vij S, Mishra BK, Mandal S, Choubey CS (2012) Effect of antioxidative activity and polyphenol content in fermented soy milk. Bioved 24:225–234

    Google Scholar 

  16. Indian Standards (1961) Methods of test for dairy industry part-II chemical analysis of milk. Indian Standards Institution, New Delhi (1479)

    Google Scholar 

  17. Kailasapathy K, Harmstorf I, Philips M (2008) Survival of Lactobacillus acidophilus and Bifidobacterium animalis spp. Lactis in stirred fruit yogurts. Journal of LWT-Food Science and Technology 41:1317–1322

    Article  CAS  Google Scholar 

  18. Rybka S, Kailasapathy K (1995) The survival of culture bacteria in fresh and freeze-dried AB yogurts. Aust J Dairy Technol 50(2):58–60

    Google Scholar 

  19. Indian Standards (1960) Methods of test for dairy industry part-I rapid examination of milk. Indian Standards Institution, New Delhi (1479)

    Google Scholar 

  20. Hati S, Sreeja V, Solanki J, Prajapati JB (2015) Significance ofproteolytic microorganisms on ACE-inhibitory activity and release of bioactivepeptides during fermentation of milk. Indian J Dairy Sci 68:1–8

    Google Scholar 

  21. Cheung HS (1971) Spectrophotometric assay and properties of the angiotensin-converting enzyme of rabbit lung. Biochem Pharmacol 20:1637–1648

    Article  PubMed  Google Scholar 

  22. Garriga M, Pascual M, Monfort JM, Hugas M (1998) Selection of lactobacilli for chicken probiotic adjuncts. J Appl Microbiol 84:125–132

    Article  CAS  PubMed  Google Scholar 

  23. Toure R, Kheadr E, Lacroix C, Moroni O, Fliss I (2003) Production of antibacterial substances by bifidobacterial isolates from infant stool active against Listeria monocytogenes. J Appl Microbiol 95:1058–1069

    Article  CAS  PubMed  Google Scholar 

  24. Steel RGD, Torrie JH (1980) Principles and procedure of statistics – a biometrical approach, 2nd edn. McGraw-Hill Kogakusha Ltd, Japan

    Google Scholar 

  25. Mäyrä-Mäkinen A, Bigret M (2004) Industrial use and production of lactic acid bacteria. In: Salminen S, von Wright A, Ouwehand A (eds) Lactic acid bacteria microbiological and functional aspects. Marcel Dekker Inc, New York, pp 175–198

    Google Scholar 

  26. Griffiths MW, Tellez AM (2003) Lactobacillus helveticus: the proteolytic system. Front Microbiol 4:1–9

    Google Scholar 

  27. Kongo J M (2013) Lactic acid bacteria as starter-cultures for cheese processing: past, present and future developments. Chapter 1

  28. Telang AM, Joshi VS, Sutar N, Thorat BN (2010) Enhancement of biological properties of soymilk by fermentation. Food Biotechnol 24:375–387

    Article  CAS  Google Scholar 

  29. Donkor ON, Henriksson A, Vasiljevic T, Shah NP (2007) Proteolytic activity of dairy lactic acid bacteria and probiotics as determinant of growth and in vitro angiotensin converting enzyme inhibitory activity in fermented milk. Le Lait INRA Editions 87(1):21–38

    Article  CAS  Google Scholar 

  30. Donkor ON, Henriksson A, Vasiljevic T, Shah NP (2006) Effect of acidification on the activity of probiotics in yoghurt during cold storage. Int Dairy J 16:1181–1189

    Article  CAS  Google Scholar 

  31. Mital BK, Steinkraus KH, Naylor HB (1974) Growth of lactic acid bacteria in soymilks. J Food Sci 39:1018–1022

    Article  CAS  Google Scholar 

  32. Hati S, Vij S, Mandal S, Malik RK, Vandna K (2013) α-galactosidase activity and oligasaccharides utilization by probiotic lactobacilli during fermentation of soy milk. J Food Processing and Preservation 38:1065–1071

    Article  CAS  Google Scholar 

  33. Wang MF, Chan YC, Komatsu T, Wong Y, Chen TH, Yamamoto K, Nagaoka S, Yamamoto S (2001) Soy protein hydrolysate with bound phospholipids reduces serum cholesterol levels in hypercholesteromic adult malevolunteers. Biosci Biotechnol Biochem 65(1):72–78

    Article  PubMed  Google Scholar 

  34. Juillard V, Le Bars D, Kunji ERS, Konings WN, Gripon JC, Richard J (1995) Oligopeptides are the main source of nitrogen for Lactococcus lactis during growth in milk. Appl Environ Microbiol 61:3024–3030

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Shihata A, Shah NP (2000) Proteolytic profiles of yogurt and probiotic bacteria. Int Dairy 10:401–408

    Article  CAS  Google Scholar 

  36. Nielsen PM, Petersen D, Dambmann C (2001) Improved method for determining food protein degree of hydrolysis. J Food Sci 66:642–646

    Article  CAS  Google Scholar 

  37. Leclerc PL, Gauthier SF, Bachelard H, Santure M, Roy D (2002) Antihypertensive activity of casein-enriched milk fermented by Lactobacillus helveticus. Int Dairy J 12:995–1004

    Article  CAS  Google Scholar 

  38. Fuglsang A, Rattray FP, Nilsson D, Nyborg NCB (2003) Lactic acid bacteria: inhibition of angiotensin converting enzymes in vitro and in vivo. Antonie Leeuwenhoek 83:27–34

    Article  CAS  PubMed  Google Scholar 

  39. Pihlanto-Leppällä A, Rokka T, Korhonen H (1998) Angiotensin I converting enzyme inhibitory peptides derived from bovine milk proteins. Int Dairy J 8:325–333

    Article  Google Scholar 

  40. Donkor ON, Henriksson A, Vasiljevic T, Shah NP (2007) α-galactosidase and proteolytic activities of selected probiotic and dairy cultures in fermented soymilk. Food Chem 104(1):10–20

    Article  CAS  Google Scholar 

  41. Božanić R, Lovković S, Jeličić I (2011) Optimising fermentation of soymilk with probiotic bacteria. Czech J Food Sci 29(1):51–56

    Article  Google Scholar 

  42. Jay JM (1982) Antibacterial properties of diacetyl. App Environ Microbiol 44:525–532

    CAS  Google Scholar 

  43. Mezaini A, Chihib NE, Dilmi Bouras A, Nedjar-Arroume N, Pierre Hornez J (2009) Antibacterial activity of some lactic acid bacteria isolated from an Algerian dairy product. J Environmental and Public Health 678495:6

    Google Scholar 

  44. Mel’nikova EU, Koroleva NS (1975) Capacity of Lb. bulgaricus and Str. thermophilus starter to produce antibiotic substances. Dairy Sci Abstr 37(7):4329

    Google Scholar 

  45. Kumari P, Vij S (2015) Growth and antibacterial activity of proteolytic probiotic Lactobacillus rhamnosus C6 in soymilk and whey. Indian J Dairy Sci 68(3):229–238

    Google Scholar 

  46. Bao Y, Zhang Y, Li H et al (2012) In vitro screen of Lactobacillus plantarum as probiotic bacteria and their fermented characteristics in soymilk. Ann Microbiol 62:1311–1320

    Article  CAS  Google Scholar 

  47. Tadesse G, Ephraim E, Ashenafi M (2005) Assessment of the antibacterial activity of lactic acid bacteria isolated from Borde and Shamita, traditional Ethiopian fermented beverages, on some food borne pathogens and effect of growth medium on the inhibitory activity. Int J Food Safety 5:13–20

    Google Scholar 

  48. Sivakumar N, Kalaiarasu S (2010) Microbiological approach of curd samples collected from different locations of Tamilnadu India. International Journal of Current Research 10:027–030

    Google Scholar 

Download references

Acknowledgements

This work is sponsored by the Department of Science and Technology, New Delhi, India, under Young Scientist Scheme (Start-up Grant).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subrota Hati.

Ethics declarations

Conflict of Interest

Subrota Hati, Nikita Patel and Surajit Mandal declared that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hati, S., Patel, N. & Mandal, S. Comparative Growth Behaviour and Biofunctionality of Lactic Acid Bacteria During Fermentation of Soy Milk and Bovine Milk. Probiotics & Antimicro. Prot. 10, 277–283 (2018). https://doi.org/10.1007/s12602-017-9279-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12602-017-9279-5

Keywords

Navigation