Skip to main content

Advertisement

Log in

Antioxidant Lactobacilli Could Protect Gingival Fibroblasts Against Hydrogen Peroxide: A Preliminary In Vitro Study

  • Published:
Probiotics and Antimicrobial Proteins Aims and scope Submit manuscript

Abstract

Oxidative stress and tissue destruction are at the heart of periodontal diseases. The dental research area is geared toward the prevention of free radicals by nutrient antioxidants. Lactic acid bacteria (LAB) have recently attracted attention in alternative dental therapies. We aimed at highlighting the antioxidative property of Lactobacilli and Bifidobacterium strains and at determining their protective effect on gingival fibroblasts (GFs). Two Lactobacilli and 2 Bifidobacterium strains were screened for their exopolysaccharide (EPSs) production. Antioxidative assays were conducted by spectrophotometer analysis. Resistance to different concentrations of hydrogen peroxide (H2O2) was determined by the serial dilution technique. The protective effect of strains on GFs on hydrogen peroxide exposure was also examined by a new trypan blue exclusion assay method. Bifidobacterium breve A28 showed the highest EPS production (122 mg/l) and remarkable antioxidant activity, which were demonstrated by its ability to scavenge 72 % α,α-diphenyl-1-picrylhydrazyl free radical and chelate 88 % of iron ion, respectively. Inhibition of lipid peroxidation was determined as 71 % for the A28 strain. We suggest that LAB with antioxidative activity could be a good natural therapy agent for periodontal disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Kornman KS (2008) Mapping the pathogenesis of periodontitis: a new look. J Periodontol 79:1560–1561

    Article  CAS  Google Scholar 

  2. Akman S, Canakci V, Kara A, Tozoğlu U, Arabacı T, Dagsuyu IM (2013) Therapeutic effects of alpha-lipoic acid and vitamin C on alveolar bone resorption after experimental periodontitis in rats: a biochemical, histochemical and sterologic study. J Periodontol 84:666–674

    Article  CAS  Google Scholar 

  3. Ridgeway EE (2000) Periodontal disease: diagnosis and management. J Am Acad Nurse Pract 12:79–83

    Article  CAS  Google Scholar 

  4. Canakci CF, Cicek Y, Yildirim A, Sezer U, Canakci V (2009) Increased levels of 8-hydroxydeoxyguanosine an malondialdehyde and its relationship with antioxidant enzymes in saliva of periodontitis patients. Eur J Dent 3:100

    Google Scholar 

  5. Chen Q, Olashaw N, Wu J (1995) Participation of reactive oxygen species in the lysophosphatidic acid stimulated mitogen activated protein kinase activation pathway. J Biol Chem 270:28499–28502

    Article  CAS  Google Scholar 

  6. Lo YYC, Wong JMS, Cruz TF (1996) Reactive oxygen species mediate cytokine activation of c-Jun NH2 terminal kinases. J Biol Chem 271:15703–15707

    Article  CAS  Google Scholar 

  7. Pavlica Z, Petelin M, Erzen D, Skaleric U (2004) Measurement of total antioxidant capacity in gingival crevicular fluid in serum in dogs with periodontal disease. Am J Vet Res 65:1584–1588

    Article  Google Scholar 

  8. Battino M, Bullon P, Wilson M, Newman H (1999) Oxidative injury and inflammatory periodontal diseases; the challenge of antioxidants to free radicals and reactive oxygen species. Crit Rev Oral Biol Med 10:458–476

    Article  CAS  Google Scholar 

  9. FAO/WHO (2001) Regulatory and clinical aspects of dairy probiotics. Food and Agriculture Organization of the United Nations and World Health Organization expert consultation report

  10. Meurman JH, Stamatova I (2007) Probiotics: contributions to oral health. Oral Dis 13:443–451

    Article  CAS  Google Scholar 

  11. Grudianov AI, Dmitrieva NA, Fomenko EV (2002) Use of probiotics bifidumbacterin and acilact in tablets in therapy of periodontal inflammations. Stomatol Mosk 81:39–43

    CAS  Google Scholar 

  12. Comelli EM, Guggenheim B, Stingele F, Neeser JR (2002) Selection of dairy bacterial strains as probiotics for oral health. Eur J Oral Sci 110:218–224

    Article  Google Scholar 

  13. Koduganti RR, Sandeep N, Guduguntla S, Chandana Gorthi V (2011) Probiotics and prebiotics in periodontal therapy. Indian J Dent Res 22:324–330

    Article  Google Scholar 

  14. Aslım B, Yüksekdağ ZN, Beyatlı Y, Mercan M (2005) Exopolysaccharide production by Lactobacillus delbrueckii subsp bulgaricus and Streptococcus thermophilus strains under different growth conditions. World J Microbiol Biotechnol 21:673–677

    Article  Google Scholar 

  15. Kodali VP, Sen R (2008) Antioxidant and free radical scavenging activities of an exopolysaccharide from a probiotic bacterium. Biotechnol J 3:245–251

    Article  CAS  Google Scholar 

  16. Yıldız GG, Öztürk M, Aslım B (2011) Identification of Lactobacillus strains from breast-fed infant and investigation of their cholesterol-reduction effects. World J Microbiol Biotechnol 27:2397–2406

    Article  Google Scholar 

  17. Wasilewska E, Bielecka M (2003) Isolation and identification of bifidobacteria from infant gut. Pol J Food Nutr Sci 12:90–94

    CAS  Google Scholar 

  18. Kaufmann P, Pfefferkorn A, Teuber M, Meile L (1997) Identification and quantification of Bifidobacterium species isolated from food with genus-specific 16S rRNA- targeted probes by colony hybridization and PCR. Appl Environ Microbiol 63:1268–1273

    CAS  Google Scholar 

  19. Lane DJ (1991) rRNA sequencing. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. Wiley, New York, pp 115–175

    Google Scholar 

  20. Turner S, Pryer KM, Miao VP, Palmer JD (1999) Investigating deep phylogenetic relationships among cyanobacteria and plastids by small subunit rRNA sequence analysis. J Eukaryot Microbiol 46:327–338

    Article  CAS  Google Scholar 

  21. Frengova GI, Simova ED, Beshkova DM, Simov ZI (2000) Production and monomer composition of exopolysaccharides by yoghurt starter cultures. Can J Microbiol 46:1123–1127

    Article  CAS  Google Scholar 

  22. Dubois M, Gilles KA, Hamilton JK, Peters PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356

    Article  CAS  Google Scholar 

  23. Torino MI, Taranto MP, Sesma F, Font de Valdez G (2001) Heterofermentative pattern and exopolysaccharide production by Lactobacillus helveticus 15807 in response to environmental pH. J Appl Microbiol 91:846–852

    Article  CAS  Google Scholar 

  24. Blois MS (1958) Antioxidant determinations by the use of a stable free radical. Nature 181:1199–1200

    Article  CAS  Google Scholar 

  25. Lin MY, Chang FJ (2000) Antioxidative effect of intestinal bacteria Bifidobacterium longum ATCC 15708 and Lactobacillus acidophilus ATCC 4356. Digest Dis Sci 45:1617–1662

    Article  CAS  Google Scholar 

  26. Decker EA, Welch B (1990) Role of ferritin a lipid oxidation catalyst in muscle food. J Agric Food Chem 38:674–677

    Article  CAS  Google Scholar 

  27. Rodriguez-Martinez MA, Ruiz-Torres A (1992) Homeostasis between lipid peroxidation and antioxidant enzyme activities in healthy human aging. Mech Ageing Dev 66:213–222

    Article  CAS  Google Scholar 

  28. Doleyres Y, Fliss I, Lacroix C (2004) Increased stress tolerance of Bifidobacterium longum and Lactococcus lactis produced during continuous mixed strain immobilized cell fermentation. J Appl Microbiol 97:527–539

    Article  CAS  Google Scholar 

  29. Kılıç E, Ceyhan T, Çetinkaya Uçkan D (2007) Evaluation of differentiation potential of human bone marrow derived mesenchymal stromal cells to cartilage and bone cells. Acta Orthop Traumatol Turc 41:295–301

    Google Scholar 

  30. Tayman C, Uçkan D, Kılıç E et al (2011) Mesenchymal stem cell therapy in necrotizing enterocolitis: a rat study. Pediatr Res 70:489–494

    Article  Google Scholar 

  31. Peres VF, Moura DJ, Sperotto ARM et al (2009) Chemical composition and cytotoxic mutagenic and genotoxic activities of the essential oil from Pipergaudichaudianum Kunth leaves. Food Chem Toxicol 47:2389–2395

    Article  CAS  Google Scholar 

  32. Alp G, Aslım B, Suludere Z, Akca G (2010) The role of hemagglutination and effect of exopolysaccharide production on bifidobacteria adhesion to Caco-2 cells in vitro. Microbiol Immunol 54:658–665

    Article  CAS  Google Scholar 

  33. Meurman JH (2005) Probiotics: do they have a role in oral medicine and dentistry? Eur J Oral Sci 113:188–196

    Article  Google Scholar 

  34. Nasae L, Hatakka K, Savilahti E et al (2001) Effect of long term consumption of a probiotic bacterium, Lactobacillus rhamnosus GG in milk on dental caries and caries risk in children. Caries Res 35:412–420

    Article  Google Scholar 

  35. Krasse P, Carlsson B, Dahl C, Paulsson A, Nisson A, Sinkiewicz G (2006) Decreased gum bleeding and reduced gingivitis by the probiotic Lactobacillus reuteri. Swed Dent J 30:55–60

    Google Scholar 

  36. Twetman S, Derawi B, Keller M, Ekstrand K, Yucel-Lindberg T, Stecksen-Blicks C (2009) Short-term effect of chewing gums containing probiotic Lactobacillus reuteri on the levels of inflammatory mediators in gingival crevicular fluid. Acta Odontol Scand 67:19–24

    Article  CAS  Google Scholar 

  37. Mayanagi G, Kimura M, Nakaya S, Hirata H, Sakamoto M, Benno Y, Shimauchi H (2009) Probiotic effects of orally administered Lactobacillus salivarius WB21-containing tablets on periodontopathic bacteria: a double-blinded, placebo-controlled, randomized clinical trial. J Clin Periodontol 36:506–513

    Article  CAS  Google Scholar 

  38. Shimauchi H, Mayanagi G, Nakaya S, Minamibuchi M, Ito Y, Yamaki K, Hirata H (2008) Improvement of periodontal condition by probiotics with Lactobacillus salivarius WB21: a randomized, double-blind, placebo-controlled study. J Clin Periodontol 35:897–905

    Article  CAS  Google Scholar 

  39. Uiaoney S, Chandra J, Faddoul F, Chane M, Wang J, Taifour L, Mamtani MR, Thakre TP, Kulkarni H, Mukherjee P, Ghannoum MA (2014) In vitro effect of over-the-counter probiotics on the ability of Candida albicans to form biofilm on denture strips. J Dent Hyg 88:83–189

    Google Scholar 

  40. Sokhee S, Chulasiri M, Prachyabrued W (2001) Lactic acid bacteria from healthy oral cavity of Thai volunteers: inhibition of oral pathogens. J Appl Microbiol 90:172–179

    Article  Google Scholar 

  41. Lee YK, Salminen S (1995) The coming of age of probiotics. Trends Food Sci Technol 6:241–245

    Article  Google Scholar 

  42. Tuomola E, Crittenden R, Playne M, Isolauri E, Salminen S (2001) Quality assurance criteria for probiotic bacteria. Am J Clin Nutr 73:393–398

    Google Scholar 

  43. Juntunen M, Kirjavainen PV, Ouwehand AC, Salminen SJ, Isolauri E (2001) Adherence of probiotic bacteria to human intestinal mucus in healthy infants and during rotavirus infection. Clin Diagn Lab Immunol 8:293–296

    CAS  Google Scholar 

  44. Welman AD, Maddox IS (2003) Exopolysaccharides from lactic acid bacteria: perspectives and challenges. Trends Biotechnol 21:269–274

    Article  CAS  Google Scholar 

  45. Cerning J, Bouillanne C, London M, Desmazeaud MJ (1992) Isolation and characterization of exopolysaccharides from lime-forming mesophilic lactic acid bacteria. J Dairy Sci 75:692–699

    Article  CAS  Google Scholar 

  46. Choi SS, Kim Y, Han KS, You S, Oh S, Kim SH (2006) Effects of Lactobacillus strains on cancer cell proliferation and oxidative stress in vitro. Lett Appl Microbiol 42:452–458

    Article  CAS  Google Scholar 

  47. Liu J, Juo J, Ye H, Sun Y, Liu Z, Zeng X (2009) Production, characterization and antioxidant activities in vitro of exopolysaccharides from endophytic bacterium Paenibacillus polymyxa EJS-3. Carbohydr Polym 78:275–281

    Article  CAS  Google Scholar 

  48. Xu R, Shang N, Li P (2011) In vitro and in vivo antioxidant activity of exopolysaccharide fractions from Bifidobacterium animals RH. Anaerobe 17:226–231

    Article  CAS  Google Scholar 

  49. Kishk YFM, Al Sayed H (2007) Free radical scavenging and antioxidative activities of some polysaccharides in emulsions. LWT Food Sci Technol 40:270–277

    Article  CAS  Google Scholar 

  50. Okamoto K, Nakayama K, Kadowaki T, Ab N, Ratnayake D, Yamamoto K (1998) Involvement of a lysine-specific cysteine proteinase in hemoglobin absorption and heme accumulation by Porphyromonas gingivalis. J Biol Chem 273:21225–21231

    Article  CAS  Google Scholar 

  51. Jeroni D, Brashears MM (2000) Production of HO by Lactobacillus delbrueckii subsp. lactis influenced by media use for propagation of cells. J Food Sci 65:1033–1036

    Article  Google Scholar 

  52. Okahashi N, Sumitomo T, Nakata M, Sakurai A, Kuwata H, Kawabata S (2014) Hydrogen peroxide contributes to the epithelial cell death induced by the oral mitis group of streptococci. PLoS ONE 9:e88136

    Article  Google Scholar 

  53. Halliwell B, Gutteridge M (1985) Free radicals in biology and medicine. Clarendon Press, Oxford, pp 20–64

    Google Scholar 

  54. Cabiscol E, Tamarit J, Ros J (2000) Oxidative stress in bacteria and protein damage by reactive oxygen species. Int Microbiol 3:3–8

    CAS  Google Scholar 

  55. Brock GR, Matthews JB, Butterworth CJ, Chapple IL (2004) Local and systemic antioxidant capacity in periodontitis health. J Clin Periodontol 31:515–521

    Article  CAS  Google Scholar 

  56. Panjamurthy K, Manoharan S, Ramachandran CR (2005) Lipid peroxidation and antioxidant status in patients with periodontitis. Cell Mol Biol Lett 10:255–264

    CAS  Google Scholar 

  57. Chapple IL, Brock G, Effimiadi C, Matthews JB (2002) Glutathione in gingival crevicular fluid and its relation to local antioxidant capacity in periodontal health disease. Mol Pathol 55:367–373

    Article  CAS  Google Scholar 

  58. Van der Velden U, Kuzmanova D, Chapple ILC (2011) Micronutritional approaches to periodontal therapy. J Clin Periodontol 38:142–158

    Article  Google Scholar 

  59. Dahiya P, Kamal R, Gupta R, Bhardwai R, Chaudhary K, Kaur S (2013) Reactive oxygen species in periodontitis. J Indian Soc Periodontol 17:411–416

    Article  Google Scholar 

  60. Berg RD (1998) Probiotics, prebiotics or “conbiotics”. Trends Microbiol 6:89–92

    Article  CAS  Google Scholar 

  61. Collins JK, Thornton G, Sullivan GD (1998) Selection of probiotic strains for human applications. Int Dairy J 8:487–490

    Article  Google Scholar 

Download references

Acknowledgments

We thank Prof. Ali Uğur Oral, from the Gülhane Ministry Medicinal Academy Cancer Research Center, for providing gingival fibroblast cells in cryovials and for his valuable collaboration. This work was supported by a grant from the Scientific and Technological Research Council of Turkey through Project No. TBAG 109T541 and the Gazi University through Project No. SCP 05/2009-08.

Conflict of interests

The authors have no conflict of interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ayşegül Mendi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mendi, A., Aslım, B. Antioxidant Lactobacilli Could Protect Gingival Fibroblasts Against Hydrogen Peroxide: A Preliminary In Vitro Study. Probiotics & Antimicro. Prot. 6, 157–164 (2014). https://doi.org/10.1007/s12602-014-9165-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12602-014-9165-3

Keywords

Navigation