Skip to main content
Log in

Management of benzimidazole fungicide resistance in eggplant brown rot (Phomopsis vexans) with pyraclostrobin

  • Published:
Phytoparasitica Aims and scope Submit manuscript

Abstract

Brown rot (Phomopsis vexans) is a destructive disease of eggplant, which mainly causes fruit rot. It is currently managed through extensive foliar applications of fungicides, such as benzimidazole chemicals. In this research study, a total of 513 single-conidial isolates of P. vexans were collected between 2010 and 2013 for the purpose of characterizing their resistance to benzimidazole fungicides and diethofencarb. Two types of benzimidazole-resistant (Ben R) isolates, Ben R1 (benzimidazole-resistant and diethofencarb-sensitive), and Ben R2 (benzimidazole-resistant and diethofencarb-resistant), were detected. Ben R1 was associated with a point mutation from the GAG to GTG at codon 198 in the β-tubulin gene of the Ben S isolates, and was predicted to cause changes from glutamic acid to valine. Ben R2 was associated with a point mutation from the TTC to TAC at codon 200 in the β-tubulin gene of the Ben S isolates. It was determined that, whether the isolates of the P. vexans were sensitive or resistant to the benzimidazole fungicides, pyraclostrobin (a QoI fungicide) showed strong bioactivity against their mycelial growth, spore germination, and disease lesion development. Also, experiments in 2014 and 2015 at three testing sites showed that pyraclostrobin provided excellent control against brown rot disease in the eggplant fields, and significantly increased the yields of the eggplant fruits. Meanwhile, the applications of benzimidazole fungicides (carbendazim alone or mixed with diethofencarb) were found to aggravate the occurrences of the brown rot, and the eggplant yields were observed to decrease. The baseline sensitivity of the P. vexans to pyraclostrobin was further determined for these 513 isolates. In regard to inhibiting the mycelial growth, the mean EC50 values of the tested isolates were determined to be 3.19 ± 0.43 and 1.28 ± 0.14 mg l−1, respectively, in the absence and presence of the alternative oxidase specific inhibitor salicylhydroxamic acid (SHAM), and the range-of-variation factors were 49.6 and 35.1. For inhibiting spore germination, the mean EC50 values were 0.61 ± 0.12 and 0.39 ± 0.11 mg l−1, with the range-of-variation factors of 32.1 and 17.9, respectively. This study confirmed a serious resistance emergency to benzimidazole fungicides in the P. vexans populations, and indicated that pyraclostrobin may be a good alternative fungicide to control eggplant brown rot.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Albertini, C., Gredt, M., & Leroux, P. (1999). Mutations of the β-tubulin gene associated with different phenotypes of benzimidazole resistance in the cereal eyespot fungi Tapesia yallundae and Tapesia acuformis. Pesticide Biochemistry Physiology, 64, 17–31.

    Article  CAS  Google Scholar 

  • Avila-Adame, C., & Köller, W. (2003). Impact of alternative respiration and target-site mutations on responses of germinating conidia of Magnaporthe grisea to Qo-inhibiting fungicides. Pest Management Science, 59, 303–309.

    Article  CAS  PubMed  Google Scholar 

  • Bartlett, D. W., Clough, J. M., Godwin, J. R., Hall, A. A., Hamer, M., & Parr-Dobrzanski, B. (2002). The strobilurin fungicides. Pest Management Science, 58, 649–662.

    Article  CAS  PubMed  Google Scholar 

  • Brent, K. J., & Hollomon, D. W. (2007). Fungicide resistance: the assessment of risk. FRAC Monograph 2, GCPF, Brussels (Now CropLife International). Available on line at www.frac.info.

  • Chaudhary, S. R., & Hasija, S. K. (1979). Phytopathological on Phomopsis vexans causing soft of brinjal fruits. Indian Phytopathology, 32, 495–496.

    Google Scholar 

  • Chen, C. J., Yu, J. J., Bi, C. W., Zhang, Y. N., Xu, J. Q., Wang, J. X., & Zhou, M. G. (2009). Mutations in a β-tubulin confer resistance of Gibberella zeae to benzimidazole fungicides. Phytopathology, 99, 1403–1411.

    Article  CAS  PubMed  Google Scholar 

  • Chen, S. S., Song, S. Y., Han, Y. Z., Zhao, J., Zhao, C. B., & Wen, T. (2015). Resistant responses in protective enzymes of different eggplant cultivars to Phomopsis vexans. Journal of Northwest A & F University - Natural Science, 43, 1–9.

    CAS  Google Scholar 

  • Choudhary, B., & Gaur, K. (2009). The development and regulation of Bt brinjal in India (Eggplant/Aubergine). International Service for the Acquisition of Agri-biotech Applications (ISAAA) Brief No. 38. Ithaca: ISAAA. 15 p.

    Google Scholar 

  • Davidse, L., & Ishii, T. (1995). Biochemical and molecular aspects of benzimidazoles, N-phenylcarbamates and N-phenylformamidoxines and the mechanisms of resistance to these compounds in fungi. In H. Lyr (Ed.), Modern selective fungicides (pp. 305–322). Jena: Gustav Fisher.

    Google Scholar 

  • Davidson, R. M., Hanson, L. E., Franc, G. D., & Panella, L. (2006). Analysis of β-tubulin gene fragments from benzimidazole-sensitive and -tolerant Cercospora beticola. Journal of Phytopathology, 154, 321–328.

    Article  CAS  Google Scholar 

  • Dharam, S., & Chakrabarri, A. K. (1982). Chemical control of Phomopsis fruit rot of brinjal. Indian Phytopathology, 35, 314–315.

    Google Scholar 

  • Di, Y. L., Zu, Z. Q., & Zhu, F. X. (2015). Pathogenicity stimulation of Sclerotinia sclerotiorum by subtoxic doses of carbendazim. Plant Disease, 99, 1342–1346.

    Article  CAS  Google Scholar 

  • Drabesova, J., Ryanek, P., Brunner, P., Mc Donald, B. A., & Croll, D. (2013). Population genetic structure of Mycosphaerella graminicola and Quinone Outside Inhibitor (Qo I) resistance in the Czech Republic. European Journal of Plant Pathology, 135, 211–224.

    Article  Google Scholar 

  • Elad, Y., Shabi, E., & Katan, T. (1988). Negative cross-resistance between benzimidazole and N-phenylcarbamate fungicides and control of Botrytis cinerea on grapes. Plant Pathology, 37, 141–147.

    Article  CAS  Google Scholar 

  • Estep, L. K., Torriani, S. F., Zala, M., Anderson, N. P., Flowers, M. D., Mc Donald, B. A., Mundt, C. C., & Brunner, P. C. (2015). Emergence and early evolution of fungicide resistance in North American populations of Zymoseptoria tritici. Plant Pathology, 64, 961–971.

    Article  CAS  Google Scholar 

  • FAO. (2010). Food and Agriculture Organization (FAO) database. http://www.faostat.fao.org/site/567/DesktopDefault.aspx.

  • Ishii, H., Fraaije, B. A., Sugiyama, T., Nogouchi, K., Nishimura, K., Takeda, T., Amano, T., & Hollomon, D. W. (2001). Occurrence and molecular characterization of strobilurin resistance in cucumber powdery and downy mildew. Phytopathology, 91, 1166–1171.

    Article  CAS  PubMed  Google Scholar 

  • Koenraadt, H., Somerville, S. C., & Jones, A. L. (1992). Characterization of mutations in the beta-tubulin gene of benomyl-resistant field strains of Venturia inaequalis and other plant pathogenic fungi. Phytopathology, 82, 1348–1354.

  • Leroux, P., Fritz, R., Debieu, D., Albertini, C., Lanen, C., Bach, J., Gredt, M., & Chapeland, F. (2002). Mechanisms of resistance to fungicides in field strains of Botrytis cinerea. Pest Management Science, 58, 876–888.

    Article  CAS  PubMed  Google Scholar 

  • Liu, X. M., Zhang, H. Q., & Bai, R. L. (1994). Control of eggplant brown rot (Phomopsis vexans) with fungicide mixtures. Journal of Vegetable, 2, 13–14.

    Google Scholar 

  • Ma, Z., & Michailides, T. J. (2005). Advances in understanding molecular mechanisms of fungicide resistance and molecular detection of resistant genotypes in phytopathogenic fungi. Crop Protection, 24, 853–863.

    Article  CAS  Google Scholar 

  • Ma, Z. H., Yoshimura, M. A., Holtz, B. A., & Michailides, T. J. (2005). Characterization and PCR-based detection of benzimidazole-resistant isolates of Monilinia laxa in California. Pest Management Science, 61, 449–457.

    Article  CAS  PubMed  Google Scholar 

  • Maymon, M., Zveibil, A., Pivonia, S., Minz, D., & Freeman, S. (2006). Identification and characterization of benomyl-resistant and -sensitive populations of Colletotrichum gloeosporioides from statice (Limonium spp.). Phytopathology, 96, 542–548.

    Article  CAS  PubMed  Google Scholar 

  • McKay, G., Egan, J. D., Morris, E., & Brown, A. E. (1998). Identification of benzimidazole resistance in Cladobotryum dendroides using a PCR-based method. Mycological Research, 102, 671–676.

    Article  CAS  Google Scholar 

  • Michael, K., Grimmer, F. V. B., Stephen, J. P., & Neil, D. P. (2015). Fungicide resistance risk assessment based on traits associated with the rate of pathogen evolution. Pest Management Science, 71, 207–215.

    Article  Google Scholar 

  • Mikaberidze, A., McDonald, B. A., & Bonhoeffer, S. (2014). Can high-risk fungicides be used in mixtures without selecting for fungicide resistance? Phytopathology, 104, 324–331.

    Article  PubMed  Google Scholar 

  • Nenad, T., Anja, M., Rade, S., Milana, M., Jelena, J., Ivo, T., & Jelena, B. (2015). Occurrence of Cercospora beticola populations resistant to benzimidazoles and demethylation-inhibiting fungicides in Serbia and their impact on disease management. Crop Protection, 75, 80–87.

    Article  Google Scholar 

  • Olaya, G., & Köller, W. (1999). Baseline sensitivities of Venturia inaequalis populations to the strobilurin fungicide kresoxim-methyl. Plant Disease, 83, 273–278.

    Article  Google Scholar 

  • Russell, P. E. (2004). Sensitivity baselines in fungicide resistance research and management. FRAC Monograph 3, CropLife International, Brussels. Available on line at www.frac.Info.

  • Shi, H. J., Wu, H. M., Zhang, C. Q., & Shen, X. (2013). Monitoring and Characterization of resistance development of strawberry Phomopsis leaf blight to fungicides. European Journal of Plant Pathology, 135, 655–660.

    Article  CAS  Google Scholar 

  • Sierotzki, H., Wullschleger, J., & Gisi, U. (2000). Point mutation in cytochrome b gene conferring resistance to strobilurin fungicides in Erysiphe graminis f.sp. tritici field isolates. Pesticide Biochemistry and Physiology, 68, 107–112.

    Article  CAS  Google Scholar 

  • Torres-Calzada, C., Tapia-Tussel, R., Higuera-CiaparaI, M. R., Nexticapan-Garcez, A., & Perez-Brito, D. (2015). Sensitivity of Colletotrichum truncatum to four fungicides and characterization of thiabendazole-resistant isolates. Plant Disease, 99, 1590–1595.

    Article  CAS  Google Scholar 

  • Wu, R. F., Yang, X. L., & Yang, D. Z. (2013). Studies on identification of eggplant Phomopsis rot caused by Phomopsis vexans and its biological characteristics. China Vegetables, 1(8), 80–85.

    Google Scholar 

  • Zhang, C. Q., Liu, Y. H., & Zhu, G. N. (2010). Detection and characterization of benzimidazole resistance of Botrytis cinerea in greenhouse vegetables. European Journal of Plant Pathology, 126, 509–515.

    Article  CAS  Google Scholar 

  • Zhang, C. Q., Liu, Y. H., Ding, L., & Zhu, G. N. (2011). Shift of sensitivity of Botrytis cinerea to azoxystrobin in greenhouse vegetables before and after exposure to the fungicide. Phytoparasitica, 39, 293–302.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was partially supported by the Special Fund for Agro-Scientific Research in the Public Interest (No. 201303023).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuan Qing Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Dai, D.J., Di Wang, H. et al. Management of benzimidazole fungicide resistance in eggplant brown rot (Phomopsis vexans) with pyraclostrobin. Phytoparasitica 44, 313–324 (2016). https://doi.org/10.1007/s12600-016-0534-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12600-016-0534-1

Keywords

Navigation