Skip to main content
Log in

Effects of interactions among Metarhizium anisopliae, Bacillus thuringiensis and chlorantraniliprole on the mortality and pupation of six geographically distinct Helicoverpa armigera field populations

  • Published:
Phytoparasitica Aims and scope Submit manuscript

Abstract

A local isolate of Metarhizium anisopliae (Hypocreales: Clavicipitaceae), Bacillus thuringiensis subsp. kurstaki and chlorantraniliprole were assessed against six field populations of tomato fruitworm Helicoverpa armigera Hübner (Lepidoptera: Noctuidae) in a series of laboratory bioassays. Two dose rates of B. thuringiensis (0.5, 1 μg g−1), one of both M. anisopliae (1.3 × 106 conidia ml−1) and chlorantraniliprole (0.01 ppm) were applied alone and in combination with each other against 2nd, 3rd, 4th and 5th larval instars. The mortality was observed every 24 h until pupation. The bioassays were carried out at 25°C and 75% r.h. The highest mortality was observed in Rawalpindi with the lowest pupation rate by applying the combined concentrations of B. thuringiensis and chlorantraniliprole. The lowest mortality was observed in population from Gujranwala among all the tested populations. The antagonistic interaction was noted where the high dose rate of B. thuringiensis was combined with M. anisopliae; however, the remaining interactions enhanced the mortality and reduced the percent pupation. The overall results demonstrated that all the treatments gave significant control of the larval instars of H. armigera. The population from Gujranwala proved least susceptible whereas the one from Rawalpindi was highly susceptible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Ahmad, M., Arif, M. I., & Zahoor, A. (2001). Resistance to carbamate insecticides in Helicoverpa armigera (Lepidoptera: Noctudiae) in Pakistan. Crop Protection, 20, 427–432.

    Article  CAS  Google Scholar 

  • Ahmad, M., Arif, M. I., & Zahoor, A. (2003). Susceptibility of Helicoverpa armigera (Lepidoptera: Noctuidae) to new chemistries in Pakistan. Crop Protection, 22, 539–544.

    Article  CAS  Google Scholar 

  • Bravo, A., Gomez, I., Conde, J., Munoz-Garay, C., Sanchez, J., Miranda, R., et al. (2004). Oligomerization triggers binding of Bacillus thuringiensis Cry1Ab pore-forming toxin to aminopeptidase N receptor leading to Cry1Ac δ-endotoxin of Bacillus thuringiensis in the cotton bollworm, Helicoverpa armigera (Lepidoptera: Noctuidae). Journal of Economic Entomology, 96, 1290–1299.

    Google Scholar 

  • Cao, G., Lu, Q., Zhang, L., Guo, F., Liang, G., Wu, K., et al. (2010). Toxicity of chlorantraniliprole to Cry1Ac-susceptible and resistant strains of Helicoverpa armigera. Pesticide Biochemistry and Physiology, 98, 99–103.

    Article  CAS  Google Scholar 

  • Carner, G. R., & Yearian, W. C. (1989). Development and use of microbial agents for control of Heliothis spp. in the USA. In E. G. King, & R. D. Jackson (Eds.), Proceedings of the workshop on biological control of Heliothis: increasing the effectiveness of natural enemies (1985, New Delhi, India) (pp. 467–481). Far Eastern Regional Research Office, US Department of Agriculture.

  • Cherry, A. J., Rabindra, R. J., Parnell, M. A., Geetha, N., Kennedy, J. S., & Grzywacz, D. (2000). Field evaluation of Helicoverpa armigera nucleopolyhedrovirus formulations for control of the chickpea pod-borer, H. armigera (Hubn.), on chickpea (Cicer arietinum var. Shoba) in southern India. Crop Protection, 19, 51–60.

    Article  Google Scholar 

  • Cordova, D., Benner, E. A., Sacher, M. D., Rauh, J. J., Sopa, J. S., Lahm, G. P., et al. (2006). Anthranilic diamides: a new class of insecticides with a novel mode of action, ryanodine receptor activation. Pesticide Biochemistry and Physiology, 84, 196–214.

    Article  CAS  Google Scholar 

  • Cordova, D., Benner, E. A., Sacher, M. D., Rauh, J. J., Sopa, J. S., Lahm, G. P., et al. (2007). Elucidation of the mode of action of Rynaxypyr®, a selective ryanodine receptor activator. In H. Ohkawa, H. Miyagawa, & P. W. Lee (Eds.), Pesticide chemistry, crop protection, public health, and environmental safety (pp. 121–126). Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA.

  • Costa, S. D., Barbercheck, M. E., & Kennedy, G. G. (2001). Mortality of Colorado potato beetle (Leptinotarsa decemlineata) after sublethal stress with the CRYIIIA delta-endotoxin of Bacillus thuringiensis and subsequent exposure to Beauveria bassiana. Journal of Invertebrate Pathology, 77, 173–179.

    Article  PubMed  CAS  Google Scholar 

  • Crecchio, C., & Stotzky, G. (2001). Biodegradation and insecticidal activity of the toxin from Bacillus thuringiensis subsp. kurstaki bound on complexes of montmorillonite-humic acids-Al hydroxypolymers. Soil Biology and Biochemistry, 33, 573–581.

    Article  CAS  Google Scholar 

  • Entwistle, P. F., Cory, J. S., Bailey, M., & Higgs, S. (Eds.). (1993). Bacillus thuringiensis, an environmental biopesticide: theory and practice. New York, NY: Wiley.

  • Furlong, M. J., & Groden, E. (2003). Starvation induced stress and the susceptibility of the Colorado potato beetle, Leptinotarsa decemlineata, to infection by Beauveria bassiana. Journal of Invertebrate Pathology, 83, 127–138.

    Article  PubMed  Google Scholar 

  • Gao, Y., Oppert, B., Lord, J. C., Liu, C., & Lei, Z. (2012). Bacillus thuringiensis Cry3Aa toxin increases the susceptibility of Crioceris quatuordecimpunctata to Beauveria bassiana infection. Journal of Invertebrate Pathology, 109, 260–263.

    Article  PubMed  CAS  Google Scholar 

  • Ghidiu, G. M., & Zehnder, G. W. (1993). Timing of the initial spray application of Bacillus thuringiensis for control of the Colorado potato beetle (Coleoptera: Chrysomelidae) in potatoes. Biological Control, 3, 348–352.

    Article  Google Scholar 

  • Gunning, R. V., Moores, G. D., & Devonshire, A. L. (1998). Insensitive acetycholinesterase causes resistance to organophosphates in Australian Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae). Pesticide Science, 54, 319–320.

    Article  CAS  Google Scholar 

  • Hafez, M., Zaki, F. N., Moursy, A., & Sabbour, M. (1997). Biological effects of the entomopathogenic fungus, Beauveria bassiana on the potato tuber moth Phthorimaea operculella (Zeller). Journal of Pesticide Science, 70, 158–159.

    Google Scholar 

  • Herbert, D. A., & Harper, J. D. (1985). Bioassay of δ-exotoxin of Bacillus thuringiensis against Heliothis zea larvae. Journal of Invertebrate Pathology, 46, 247–250.

    Article  CAS  Google Scholar 

  • Hernández, C. S., Andrew, R., Bel, Y., & Ferre, J. (2005). Isolation and toxicity of Bacillus thuringiensis from potato-growing areas in Bolivia. Journal of Invertebrate Pathology, 88, 8–16.

    Google Scholar 

  • Inglis, G. D., Goettel, M. S., Butt, T. M., & Strasser, H. (2001). Use of hyphomycetous fungi for managing insect pests. In T. M. Butt, C. Jackson, & N. Magan (Eds.), Fungi as biocontrol agents. Progress, problems and potential (pp. 23–69). Wallingford, UK: CABI Publishing.

  • Kabaluk, T., Goettel, M., Vernon, B., & Noronha, C. (2001). Evaluation of Metarhizium anisopliae as a biological control for wireworms. Organic Agriculture Center of Canada.http://www.organicagcentre.ca/ResearchDatabase/res_biol_ctrl_wireworms.asp; accessed on 20.12.2010.

  • Kryukov, V. Y., Khodyrev, V. P., Yaroslavtseva, O. N., Kamenova, A. S., Duisembekov, B. A., & Glupov, V. V. (2009). Synergistic action of entomopathogenic hyphomycetes and the bacteria Bacillus thuringiensis ssp. morrisoni in the infection of Colorado potato beetle Leptinotarsa decemlineata. Prikladnaya Biokhimiya i Mikrobiologiya, 45, 571–576.

    Google Scholar 

  • Lacey, L. A., Horton, D. R., Chauvin, R. L., & Stocker, J. M. (1999). Comparative efficacy of Beauveria bassiana, Bacillus thuringiensis, and aldicarb for control of Colorado potato beetle in an irrigated desert agroecosystem and their effects on biodiversity. Entomologia Experimentalis et Applicata, 93, 189–200.

    Article  Google Scholar 

  • Lahm, G. P., Stevenson, T. M., Selby, T. P., Freudenberger, J. H., Cordova, D., Flexner, L., et al. (2007). Rynaxypyr™: a new insecticidal anthranilic diamide that acts as a potent and selective ryanodine receptor activator. Bioorganic & Medicinal Chemistry Letters, 17, 6274–6279.

    Article  CAS  Google Scholar 

  • Lawo, N. C., Mahon, R. J., Milner, R. J., Sarmah, B. K., Higgins, T. J. V., & Romeis, J. (2008). Effectiveness of Bacillus thuringiensis-transgenic chickpeas and the entomopathogenic fungus Metarhizium anisopliae in controlling Helicoverpa armigera (Lepidoptera: Noctuidae). Applied and Environmental Microbiology, 74, 4381–4389.

    Article  PubMed  CAS  Google Scholar 

  • Lewis, L. C., Berry, E. C., Obrycki, J. J., & Bing, L. A. (1996). Aptness of insecticides (Bacillus thuringiensis and carbofuran) with endophytic Beauveria bassiana in suppressing larval populations of European corn borer. Agriculture, Ecosystems and Environment, 57, 27–34.

    Article  Google Scholar 

  • Ma, X., Liu, X., Ning, X., Zhang, B., Han, F., Guan, X., et al. (2008). Effects of Bacillus thuringiensis toxin Cry1Ac and Beauveria bassiana on Asiatic corn borer (Lepidoptera: Crambidae). Journal of Invertebrate Pathology, 99, 123–128.

    Article  PubMed  CAS  Google Scholar 

  • Mansour, N. A., Eldefrawi, M. E., Toppozada, A., & Zeid, M. (1966). Toxicological studies on the Egyptian Cotton Leafworm, Prodenia litura VI potentiation and antagonism of carbamate insecticide. Journal of Economic Entomology, 59, 307–311.

    CAS  Google Scholar 

  • Marannino, P., Santiago-Álvarez, C., de Lillo, E., & Quesada-Moraga, E. (2006). A new bioassay method reveals pathogenicity of Metarhizium anisopliae and Beauveria bassiana against early stages of Capnodis tenebrionis (Coleoptera; Buprestidae). Journal of Invertebrate Pathology, 93, 210–213.

    Article  PubMed  Google Scholar 

  • Martin, T., Ochou, G. O., Hala, N. F., Wassal, J., & Waissayre, M. (2000). Pyrethroid resistance in cotton bollworm Helicoverpa armigera in West Africa. Pest Management Science, 56, 549–554.

    Article  CAS  Google Scholar 

  • Marzban, R., He, Q., Liu, X., & Zhang, Q. (2009). Effects of Bacillus thuringiensis toxin Cry1Ac and cytoplasmic polyhedrosis virus of Helicoverpa armigera (Hübner) (HaCPV) on cotton bollworm (Lepidoptera: Noctuidae). Journal of Invertebrate Pathology, 101, 71–76.

    Article  PubMed  CAS  Google Scholar 

  • Meissle, M., Pilz, C., & Romeis, J. (2009). Susceptibility of Diabrotica virgifera virgifera (Coleoptera: Chrysomelidae) to the entomopathogenic fungus Metarhizium anisopliae when feeding on Bacillus thuringiensis Cry3Bb1-expressing maize. Applied and Environmental Microbiology, 75, 3937–3943.

    Article  PubMed  CAS  Google Scholar 

  • Nguyen, T. H. N., Borgemeister, C., Poehling, H., & Zimmermann, G. (2007). Laboratory investigations on the potential of entomopathogenic fungi for biocontrol of Helicoverpa armigera (Lepidoptera: Noctuidae) larvae and pupae. Biocontrol Science and Technology, 17, 853–864.

    Article  Google Scholar 

  • Purwar, J. P., & Sachan, G. C. (2006). Synergistic effect of entomogenous fungi on some insecticides against Bihar hairy caterpillar Spilarctia oblique (Lepidoptera: Arctiidae). Microbiological Research, 161, 38–42.

    Article  PubMed  CAS  Google Scholar 

  • Qaim, M., Pray, C. E., & Zilberman, D. (2008). Economic and social considerations in the adoption of Bt crops. In J. Romeis, A. M. Shelton, & G. G. Kennedy (Eds.), Integration of insect-resistant genetically modified crops within IPM programs (pp. 329–356). Dordrecht, the Netherlands: Springer.

  • Remadevi, O. K., Sasidharan, T. O., Bhattacharya, J., Vossbrinck, C. R., & Rajan, P. D. (2010). Some pathological effects and transmission potential of a microsporidian isolate (Nosema sp.) from the teak defoliator Hyblaea puera (Lepidoptera: Hyblaeidae). International Journal of Tropical Insect Science, 30, 138–144.

    Article  Google Scholar 

  • Rodrigues, R. H., Bechara, I. J., Messias, C. L., & Piedrabuena, A. E. (2005). Effectiveness of Metarhizium anisopliae against immature stages of Anastrepha fraterculus fruitfly (Diptera: Tephritidae). Brazilian Journal of Microbiology, 36, 94–99.

    Google Scholar 

  • Russell, C. W., Ugine, T. A., & Hajek, A. E. (2010). Interactions between imidacloprid and Metarhizium brunneum on adult Asian longhorned beetles (Anoplophora glabripennis (Motschulsky)) (Coleoptera: Cerambycidae). Journal of Invertebrate Pathology, 105, 305–311.

    Article  PubMed  CAS  Google Scholar 

  • Sokal, R., & Rohlf, F. J. (1995). Biometry (3rd ed.). New York, NY: W. H. Freeman and Company.

  • Temple, J. H., Pommireddy, P. L., Cook, D. R., Marçon, P., & Leonard, B. R. (2009). Susceptibility of selected Lepidopteran pests to rynaxypyr®, a novel insecticide. The Journal of Cotton Science, 13, 23–31.

    Google Scholar 

  • Toledo, A. V., Alippi, A. M., & de Remes Lenicov, A. M. M. (2011). Growth inhibition of Beauveria bassiana by bacteria isolated from the cuticular surface of the corn leafhopper, Dalbulus maidis and the planthopper, Delphacodes kuscheli, two important vectors of maize pathogens. Journal of Insect Science, 11, 29. available online: insectscience.org/11.29.

    Article  PubMed  CAS  Google Scholar 

  • Vandenberg, J. D., Jackson, M. A., & Lacey, L. A. (1998). Relative efficacy of blastospores and aerial conidia of Paecilomyces fumosoroseus against the Russian wheat aphid. Journal of Invertebrate Pathology, 72, 181–183.

    Article  PubMed  CAS  Google Scholar 

  • Vega-Aquino, P., Sanchez-Peña, S., & Blanco, C. A. (2010). Activity of oil-formulated conidia of the fungal entomopathogens Nomuraea rileyi and Isaria tenuipes against lepidopterous larvae. Journal of Invertebrate Pathology, 103, 145–149.

    Article  PubMed  Google Scholar 

  • Wakil, W., Ashfaq, M., Ghazanfar, M. U., Afzal, M., & Riasat, T. (2009a). Integrated pest management of Helicoverpa armigera in chickpea in rainfed areas of Punjab, Pakistan. Phytoparasitica, 37, 415–420.

    Article  Google Scholar 

  • Wakil, W., Ashfaq, M., Kwon, Y. J., & Ghazanfar, M. U. (2009b). Trends in integrated pest management strategies for the control of Helicoverpa armigera (Hübner) caterpillars on chickpea (Cicer arietinum L.). Entomological Research, 39, 84–88.

    Article  Google Scholar 

  • Wakil, W., Ghazanfar, M. U., Kwon, Y. J., Qayyum, M. A., & Nasir, F. (2010). Distribution of Helicoverpa armigera Hübner (Lepidoptera: Noctuidae) in tomato fields and its relationship to weather factors. Entomological Research, 40, 290–297.

    Article  Google Scholar 

  • Wakil, W., Ghazanfar, M. U., Nasir, F., Qayyum, M. A., & Tahir, M. (2012). Insecticidal efficacy of Azadirachta indica, Nucleopolyhedrovirus and chlorantraniliprole singly or combined against field populations of Helicoverpa armigera Hübner (Lepidoptera: Noctuidae). Chilean Journal of Agricultural Research, 72, 53–61.

    Article  Google Scholar 

  • Wakil, W., Ghazanfar, M. U., Sahi, S. T., Kwon, Y. J., & Qayyum, M. A. (2011). Effect of modified meridic diet on the development and growth of tomato fruitworm Helicoverpa armigera (Lepidoptera: Noctuidae). Entomological Research, 41, 88–94.

    Article  Google Scholar 

  • Wilson, K., Cotter, S. C., Reeson, A. F., & Pell, J. K. (2001). Melanism and disease resistance in insects. Ecology Letters, 4, 637–649.

    Article  Google Scholar 

  • Woodring, J. L., & Kaya, H. K. (1988). Steinernematid and heterorhabditid nematodes: a handbook of biology and techniques. Fayetteville, AR USA: Arkansas Agricultural Experiment Station.

  • Wraight, S. P., & Ramos, M. E. (2005). Synergistic interaction between Beauveria bassiana and Bacillus thuringiensis tenebrionis-based biopesticides applied against field populations of Colorado potato beetle larvae. Journal of Invertebrate Pathology, 90, 139–150.

    Article  PubMed  CAS  Google Scholar 

  • Zehnder, G. W., & Gelernter, W. D. (1989). Activity of the M-One formulation of a new strain of Bacillus thuringiensis against the Colorado potato beetle (Coleoptera: Chrysomelidae): relationship between susceptibility and insect life stage. Journal of Economic Entomology, 82, 756–761.

    Google Scholar 

  • Zehnder, G. W., Ghidiu, G. M., & Speese, J. (1992). Use of the occurrence of peak Colorado potato beetle (Coleoptera: Chrysomelidae) egg hatch for timing of Bacillus thuringiensis spray applications in potatoes. Journal of Economic Entomology, 85, 281–288.

    Google Scholar 

  • Zimmermann, G. (1986). The Galleria bait method for detection of entomopathogenic fungi in soil. Journal of Applied Entomology, 102, 213–215.

    Article  Google Scholar 

  • Zimmermann, G. (2007). Review on safety of the entomopathogenic fungus Metarhizium anisopliae. Biocontrol Science and Technology, 17, 879–920.

    Article  Google Scholar 

Download references

Acknowledgments

This study is financially supported by projects from the Higher Education Commission (HEC), Islamabad, Pakistan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Waqas Wakil.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wakil, W., Ghazanfar, M.U., Riasat, T. et al. Effects of interactions among Metarhizium anisopliae, Bacillus thuringiensis and chlorantraniliprole on the mortality and pupation of six geographically distinct Helicoverpa armigera field populations. Phytoparasitica 41, 221–234 (2013). https://doi.org/10.1007/s12600-012-0282-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12600-012-0282-9

Keywords

Navigation