Skip to main content
Log in

Petrology and geochemistry of A-type granites from Khanak and Devsar areas of Bhiwani district, southwestern Haryana

  • Research Articles
  • Published:
Journal of the Geological Society of India

Abstract

Petrological and geochemical characteristics of the granites from the Khanak and Devsar areas have been discussed in this paper. Based on field, petrographical and geochemical observations, three types of granites (grey, green and pink granite) have been identified in these areas. Grey granites consist of quartz, plagioclase, biotite, hornblende as essential minerals and hematite, zircon, annite, monazite & rutile as accessory minerals. Petrographically, green granites are same as grey granites including perthite and zircon as accessory minerals. Pink granites consist of quartz, k-feldspar and biotite in Khanak whereas in Devsar granites alike as Khanak granites, but plagioclase is replaced by perthite and occurs as dominantly. Microscopically, granites of both areas show porphyritic, hypidiomorphic, granophyric, perthitic and micro granophyric textures. Geochemically, major oxide elements (except alkalies) and trace elements (Ba, Sr, Cr, Ni, V, Cu, Zn, Ga, Pb, Th and Zr) are more in green and grey granites of Khanak and Devsar areas than pink granites. Generally, they show enrichments in SiO2, Na2O+K2O, Fe/Mg, Rb, Zr, Y and and AI (Agpaitic Index) (ranges from 0.10 to 1.18) and depletion in MgO, CaO, P, Ti, Ni, Cr and V indicate their A-type affinity which is very similar to the A-type granites of MIS (Malani igneous suite) in northwestern peninsular India. Green and grey granites of Devsar area show high concentrations of Heat production (HP) 9.68 & 11.70 μWm-3 and total Heat Generation Unit (HGU) i.e 23.04 & 27.86 respectively. On the other hand, pink granites of Khanak area display a higher enrichment of HP (16.53 μWm-3) and HGU (39.37) than those granites of Devsar area. Overall, they have much a higher values of HP and HGU than the average value of continental crust (3.8 HGU), which imply a possible linear relationship with the surface heat flow and crustal heat generation in the rocks of MIS. From the petrography as well as the chemistry of Khanak and Devsar granites, it is suggested that they might have derived from the different degree of partial melting from the similar source of magma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Abdel-Rahman, A.M. (2006) Petrogenesis of anorogenic paralkaline granitic complexes from Eastern Egypt. Mineral. Magz., v.70(1), pp.27–50.

    Article  Google Scholar 

  • Anderson, J.L. (1983) Proterozoic anorogenic granite plutonism of North America. Geol. Soc. Amer., v.161, pp.133–154.

    Google Scholar 

  • Ashwal, L.D., Morgan, P., Kelly, S.A., and Preicival, G.A. (1987) Heat production in an Archean crustal profile and implications for heat flow and mobilization of heat producing elements. Earth Planet. Sci. Lett., v.85, pp.439–450.

    Article  Google Scholar 

  • Batchelor, R.A. and Bowden, P. (1985) Petrogenetic interpretation of granitoid rock series using multicationic parameters. Chem. Geol., v.48, pp.43–55.

    Article  Google Scholar 

  • Bhushan, S.K. (1985) Malani volcanism in Western Rajasthan. Indian Jour. Earth Sci., v.12, pp.58–71.

    Google Scholar 

  • Bhushan, S.K. (1989) Mineral chemistry and petrogenetic aspects of Malani volcanics, Western Rajasthan. Indian Minerals, v.43, pp.325–338.

    Google Scholar 

  • Bhushan, S.K. and Chittora, V.K. (2005) Proterozoic granitoids of Rajasthan. Jour. Geol. Soc. India, v.66, pp.741–763.

    Google Scholar 

  • Bhushan, S.K. and Chittora, V.K. (1999) Late Proterozoic bimodal assemblage of Siwana subsidence structure, Western Rajasthan, India. Jour. Geol. Soc. India, v.53, pp.433–453.

    Google Scholar 

  • Birch, F. (1954) Heat from Radioactivity. Nuclear Geology, John Wiley, New York, pp.148–174.

    Google Scholar 

  • Biste, M. (1979) Die Anwendung geochemischer Indiakatoren auf die Zinn-Hoffigkeit herzynischer granite in sud-Sardinien. Berl. Geowiss. Abh., v.18, 1.

    Google Scholar 

  • Bonin, B. (2007) A-type granites and related rocks: Evolution of a concept, problems and prospects. Lithos, v.97, pp.1–29.

    Article  Google Scholar 

  • Bonin, B. (1988) Peralkaline granites in Corsica: Some petrological and geochemical constraints. Rendiconti Della Societa Italina Di Mineralogia e Petrologia, v.43(2), pp. 281–306.

    Google Scholar 

  • Bose, M.K. (1997) Igneous Petrology. The World Press, Calcutta. 568p.

    Google Scholar 

  • Caskie, D.R.M. (1984) Identification of petrogenetic processes using covariance plots of trace-element data. Chem. Geol., v.42, pp.325–341.

    Article  Google Scholar 

  • Cerny, P., Meintzer, R.E. and Anderson, A.J. (1985) Extreme fractionation in rare element granitic pegmatites: Selected examples of data and mechanisms. The Canadian Mineralogist, v.23, pp. 381–421.

    Google Scholar 

  • Chaudhary, A.K., Gopalan, K. and Anjaneya Sastry, C. (1984) Present status of the geochronology of the Precambrian rocks of Rajasthan. Tectonophysics, v.105, pp.131–140.

    Article  Google Scholar 

  • Collins, W.J., Beams, S.D., White, A.J.R. and Chappell, B.W. (1982) Nature and origin of A-type granites with particular reference to Southeastern Australia. Contrib. Mineral. Petrol., v.80, pp.189–200.

    Article  Google Scholar 

  • Dall’Agnol, R., Costi, H.T.,A.A.S., Magalhaes, M.S. and Teixeira, N.P (1999a) Rapakavi granites from Brazil and adjacent areas. Precambrian Res., v.95, pp. 9–39.

    Article  Google Scholar 

  • Da la Roche, H., Leterrier, J., Grand Claude, P. and Marchal, M. (1980) A classification of volcanic and plutonic rocks using R1-R2 diagrams and major elements analysis-its relationship with current nomenclature. Chem. Geol., v.29, pp.183–210.

    Article  Google Scholar 

  • Dhar, S., Frel, R., Kramer, S.J.D., Nagler, T.F. and Kochhar, N. (1996) Sr, Pb and Nd isotope studies and their bearing on the petrogenesis of the Jalor and Siwana complexes, Rajasthan, India. Jour. Geol. Soc. India, v.8, pp.151–160.

    Google Scholar 

  • Eby, G.N. (1990) The A-type granitoids: A review of their occurrence and chemical characteristics and speculations on their petrogenesis. Lithos, v.26, pp.115–134.

    Article  Google Scholar 

  • Eby, G.N. and Kochhar, N. (1990) Geochemistry and petrogenesis of the Malani Igneous Suite, North Peninsular India. Jour. Geol. Soc. India, v.36, pp.109–130.

    Google Scholar 

  • El Bouseily A. M. and EI Sokkary A. A. (1975) The relation between Rb, Ba and Sr in granitic rocks. Chem. Geol., v.16, pp.207–219.

    Article  Google Scholar 

  • Frost, B.R., Barnes, C.G., Colins, W.J., Arculus, R.J., Ellis, D.J., Frost C.D. (2001) A geochemical classification for granitic rocks. Jour. Petrol., v.42, pp. 2033–2048.

    Article  Google Scholar 

  • Harker, A. (1909) A Natural History of Igneous Rocks. MacMillan.

    Google Scholar 

  • Hanson, G.N. and Langmuir, C.H. (1978) Modeling of major elements: In mantle-melt system using trace elements approaches. Geochim. Cosmochim. Acta, v.42, pp.725–741.

    Article  Google Scholar 

  • Hyndman, D.W. (1985) Petrology of igneous and metamorphic rocks. McGraw Hill Book Company, 776p.

    Google Scholar 

  • Kaur, P., Chaudhri, N., Hofmann, A.W., Raczek, I., Martino krusch, Skora, S. and Baumgartner, L.P. (2012) Two-Stage, Extreme Albitization of A-type Granites from Rajasthan, NW India. Jour. Petrol., v.53(5), pp.919–948.

    Article  Google Scholar 

  • Kochhar, N. (1982) Copper mineralization in Tusham area, Bhiwani district, Haryana, Rejoinder. Indian Minerals, v.36, pp.50–51.

    Google Scholar 

  • Kochhar, N. (1983) Tusham Ring Complex, Bhiwani, India. Proc. Indian Natural Sci. Acad., v.49A, pp.459–490.

    Google Scholar 

  • Kochhar, N. (1984) Malani Igneous Suite: Hot-spot magmatism and cratonization of the Northern part of the Indian shiled. Jour. Geol. Soc. India, v.25, pp.155–161.

    Google Scholar 

  • Kochhar, N. (2004) Geological evolution of the Trans-Aravalli Block (TAB) of the NW Indian Shield: Constraints from the Malani Igneous Suite (MIS) and its Seychelles Connection during Late Proterozoic. Spec. Publ. Geol. Surv. India, v.84, pp.247–264.

    Google Scholar 

  • Kochhar, N. (2008) A type Malani magmatism: Signatures of the Pan-African event in the Northwest Indian shield assembly of the Late Proterozoic Malani Supercontinent. Spec. Publ. Geol. Surv. India, v.91, pp.112–126.

    Google Scholar 

  • Kochhar, N. (2009) The Malani Supercontinent: Middle East connection during Late Proterozoic. In: Shrivastava, K.L. (Ed.), Economic Mineralization. Scientific Publishers, Jodhpur, pp.15–25.

    Google Scholar 

  • Kochhar, N. (2015) The Malani Supercontinent. Frontiers of earth Science. Scientific publisher (India), pp.120–138.

    Google Scholar 

  • Kochhar, N., Pande, K. and Gopalan, K. (1985) Rb/Sr age of the Tusham Ring Complex Bhiwani, India. Jour. Geolog. Soc. India, v.26, pp.216–218.

    Google Scholar 

  • Kumar, N. and Vallinayagam, G. (2010) Primary volcanic structures from Nakora area of Malani Igneous Suite, Western Rajasthan: implications for cooling and emplacement of volcanic Flows. Curr. Sci., v.98(4), pp.550–557.

    Google Scholar 

  • Kumar, N. and Vallinayagam, G. (2012) Geochemistry and petrogenesis of Neoproterozoic A-type granites at Nakora in the Malani Igneous Suite, western Rajasthan, India. Chinese Jour. Geochem., v.31, pp.221–233.

    Article  Google Scholar 

  • La Touche, T.D. (1902) Geology of the Western Rajputana. Mem. Geol. Surv. India, v.35, pp.1–116.

    Google Scholar 

  • Le Maitre, R.W., (1989) A classification of igneous rocks and glossary of term. International Union of Geological Sciences, Blackwell Scientific Publication, Oxford.

    Google Scholar 

  • Lenharo, S.L.R., Pollard, P.J. and Born, H. (2003) Petrology and textural evolution of granites associated with tin and rare metals mineralization at the Pitinga mine, Amazonas, Brazil. Lithos, v.66, pp.37–61.

    Article  Google Scholar 

  • Loiselle, M.C. and Wones, D.I. (1979) Characteristic and origin of anorogenic granites. Geol. Soc. Amer., v.11, pp.468.

    Google Scholar 

  • Maheshwari, A., Coltrori, M., Sial, A.N. and Mariano, G. (1996) Crustal influences in the petrogenesis of the Malani rhyolites, Southwestern Rajasthan: Combined trace element and oxygen isotope constraints. Jour. Geol. Soc. India, v.47, pp.611–619.

    Google Scholar 

  • MacCarthy, T.S. and Hasty, R.A. (1976) Trace element distribution patterns and their relationship to the crystallization of granite melts. Geochim. Cosmochim. Acta, v.40, pp.1351–1358.

    Article  Google Scholar 

  • Maniar, P.D., Piccoli and P.M. (1989) Tectonic discrimination of granitoids. Jour. Geol. Soc. India, v.47, pp.611–619.

    Google Scholar 

  • Murthy, M.V.N. (1962) The significance of the ring pattern of the Siwana granite bosses in Western Rajasthan. Indian Minerals, v.16, pp.297–298.

    Google Scholar 

  • Nockolds, S.R. and Allan, R. (1953) The Geochemistry of some igneous rock series. Geochim. Cosmochim. Acta, v.4, pp.105–142.

    Article  Google Scholar 

  • Pagel, M. (1982) The mineralogy and geochemistry of uranium, thorium and rare earth elements in two radioactive granites of the Vosges, France. Mineral. Magz., v.46, pp.149–161.

    Article  Google Scholar 

  • Pareek, H.S. (1986) Petrography and geochemistry of Tusham hill felsic volcanics, Haryana. Jour. Geol. Soc. India, v.27, pp.254–262.

    Google Scholar 

  • Pearce, J.A. and Norry, M.J. (1979) Petrogenetic implications of Ti, Z, Y and Nb variations in volcanic rocks. Contrib. Mineral. Petrol., v.69, pp.33–47.

    Article  Google Scholar 

  • Pearce, J.A., Harris, N.B.W. and Tindle, A.G. (1984) Trace element description diagrams for the tectonic interpretation of granitic rocks. Jour. Petrol., v.25, pp. 956–983.

    Article  Google Scholar 

  • Plant, J.A., O’Brein, C., Tarney, J. and Hurdlet, J. (1985) Geochemical criteria for recognition of high heat producing granites. In high heat production granites, hydrothermal alteration and ore genesis. Institute of Mineralogy and Meteorites, London, pp.263–283.

    Google Scholar 

  • Qasem Jan, M., Lachari, A. and Asif Khan, M. (1997) Petrography of the Nagar Parkar Igneous Complex, Tharparkar, SE Sindh. Geol. Bull. Peshwar Univ., v.30, pp.227–249.

    Google Scholar 

  • Rickwood P.C. (1989) Boundary lines within petrologic diagrams which use oxides of major and minor elements. Lithos, v.22, pp.247–263.

    Article  Google Scholar 

  • Rogers, J.J.W. and Adams, J.A.S. (1969) Thorium. In: Wedepohl, K.H. (Ed.), Handbook of Geochemistry. Springer-Verlag, Berlin, pp.11–14.

    Google Scholar 

  • Rollinson, H.R. (1993) Using Geochemical Data: Evaluation, Presentation, Interpretation. Longman scientific and technical; Copublished in the United States with John Wiley and Sons, inc., New York, 352p.

    Google Scholar 

  • Rybach, L., Werner, D., Mueller, S. and Berset G., (1977) Heat flow, heat production and crustal dynamics in the Central Alps, Switzerland. Tectonophysics, v.41, pp.113–126.

    Article  Google Scholar 

  • Shand, S.J. (1922) The problem of the alkaline rocks. Proc. Geol. Soc. South Africa, v.25, pp.19–33.

    Google Scholar 

  • Shand, S.J. (1927) The Eruptive Rocks. John Wiley and Sons, NewYork, 488p.

    Google Scholar 

  • Sharma, R. (1994) High heat production (HHP) granites of Jhunjhunu area, Rajasthan, India, Bull. Indian Geol. Assoc., v.27, pp.55–61.

    Google Scholar 

  • Singh, A.K., Singh, R.K.B. and Vallinayagam, G. (2006) Anorogenic acid volcanic rocks in the Kundal area of the Malani Igneous Suite, Northwestern India: Geochemical and petrogenetic studies. Jour. Asian Earth Sci., v.27, pp.544–557.

    Article  Google Scholar 

  • Singh, A.K. and Vallinayagam, G. (2003) Geochemistry of the A-type granite from the Kundal area of Malani Igneous Suite, District Barmer, Rajasthan: Implications for rare metal mineralization. Jour. Appld. Geochem., v.5, pp.16–25

    Google Scholar 

  • Singh, A.K. and Vallinayagam, G. (2004) Geochemistry and petrogenesis of anorogenic basic volcanic-plutonic rocks of the Kundal area of Malani Igneous Suite, Western Rajasthan, India. Proc. Indian Acad. Sci., v.113. Earth Planetary Science, pp.667–681.

    Google Scholar 

  • Stony, M. (1981) Trachytic pyroclastic from Agua de volcano, Sao Miqual Azores: evolution of a magma body over 4000 years. Contrib. Mineral. Petrol., v.12, pp.423–432.

    Google Scholar 

  • Taylor, S.R. and McLennan, S.M. (1985) The Continental Crust: its composition and evolution. Black-well Scientific publications, Oxford. 302p.

    Google Scholar 

  • Taylor, R.P., Strong, D.F., Frayer, B.J. (1981) Volatile control of contrasting trace elements distributions in peralkaline granite and volcanic rocks. Contib. Mineral. Petrol., v.77, pp.267–271

    Article  Google Scholar 

  • Thornton, C.P. and Tuttle, O.F. (1960) Chemistry of igneous rocks. Pt.I Differentiation Index. Amer. Jour. Sci., v.258, pp.664–684.

    Google Scholar 

  • Thussu, J.L. (2006) Geolgy of Haryana and Delhi. Geological Society of India, Bangalore, 191p.

    Google Scholar 

  • Vallinayagam, G. (1997) Minerals chemistry of Siwana Ring complex, W.Rajasthan, India. The Indian Mineralogist, v.31, pp.37–47.

    Google Scholar 

  • Vallinayagam, G. (2001) Geochemistry and petrogenesis of basic rocks in the Siwana Ring Complex, Barmer district, Rajasthan, India, The Indian Mineralogist, v.35(1), pp.121–133.

  • Vallinayagam, G. and Singh, L.G. (2011) Radioactive Heat Producing felsic to intermediate Volcano–plutonic rocks of Dhiran Area, Malani Igneous Suite,Western India. Open access E-Journal Earth Science India, v.4 (II), pp.68–97.

    Google Scholar 

  • Vidal, P.H., Cocherie, A. and Le Fort, P. (1982) Geochemical investigations of the Manaslu leucogranite (Himalaya, Nepal). Geochimica et Cosmochimica Acta, v.46, pp. 407–419.

    Article  Google Scholar 

  • Wesserburg, G.G. (1964) Relative contribution of U, Th and K to heat production in the Earth’s Crust. Science, v.143, pp. 465–467.

    Article  Google Scholar 

  • Whalen, J.B., Currie, K.L. and Chappell, B.W. (1987) A-type granites: Geochemical characteristics, discrimination and petrogenesis. Contrib. Mineral. Petrol., v.96, pp.407–419.

    Article  Google Scholar 

  • Yoshida, M., Rajesh, H.M. and Santosh, M. (1999) Juxtaposition of India and Medagascar: A Perspective. Gondwana Research, v.2, pp. 449–467.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Radhika Sharma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, R., Kumar, N. Petrology and geochemistry of A-type granites from Khanak and Devsar areas of Bhiwani district, southwestern Haryana. J Geol Soc India 90, 138–146 (2017). https://doi.org/10.1007/s12594-017-0691-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12594-017-0691-y

Navigation