Skip to main content
Log in

Assessing the USLE crop and management factor C for soil erosion modeling in a large mountainous watershed in Central China

  • Published:
Journal of Earth Science Aims and scope Submit manuscript

Abstract

Due to the impoundment of the Yangtze River, the Three Gorges Dam in China fosters high land-use dynamics. Soil erosion is expected to increase dramatically. One of the key factors in soil erosion control is the vegetation cover and crop type. However, determining these factors adequately for the use in soil erosion modeling is very time-consuming especially for large mountainous areas, such as the Xiangxi (香溪) catchment in the Three Gorges area. In our study, the crop and management factor C was calculated using the fractional vegetation cover (C FVC) based on Landsat-TM images from 2005, 2006, and 2007 and on literature studies (C LIT). In 2007, the values of CFVC range between 0.001 and 0.98 in the Xiangxi catchment. The mean C FVC value is 0.05. C LIT values are distinctly higher, ranging from 0.08 to 0.46 with a mean value of 0.32 in the Xiangxi catchment. The mean potential soil loss amounts to 120.62 t/ha/a in the Xiangxi catchment when using C LIT for modeling. Based on C FVC, the predicted mean soil loss in the Xiangxi catchment is 11.50 t/ha/a. Therefore, C LIT appears to be more reliable than the C factor based on the fractional vegetation cover.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References Cited

  • Behrens, T., Schmidt, K., Scholten, T., 2008. An Approach to Remove Uncertainties in Nominal Environmental Covariates and Soil Class Maps. In: Hartemink, A. E., McBratney, A., Mendoca-Santos, M. L., eds., Digital Soil Mapping with Limited Data. Springer-Verlag, New York. 213–224

    Chapter  Google Scholar 

  • Boettinger, J. L., Ramsey, R. D., Bodily, J. M., et al., 2008. Landsat Spectral Data for Digital Soil Mapping. In: Hartemink, A. E., McBratney, A., Mendoca-Santos, M. L., eds., Digital Soil Mapping with Limited Data. Springer-Verlag, New York. 193–202

    Chapter  Google Scholar 

  • Brady, N. C., Weil, R. R., 2007. The Nature and Properties of Soil. 14th Edition. Prentice Hall, New Jersey. 980

    Google Scholar 

  • Cai, Q. G., Wang, H., Curtin, D., et al., 2005. Evaluation of the EUROSEM Model with Single Event Data on Steeplands in the Three Gorges Reservoir Areas, China. Catena, 59(1): 19–33

    Article  Google Scholar 

  • de Asis, A. M., Omasa, K., 2007. Estimation of Vegetation Parameter for Modeling Soil Erosion Using Linear Spectral Mixture Analysis of Landsat ETM Data. ISPRS Journal of Photogrammetry and Remote Sensing, 62(4): 309–324

    Article  Google Scholar 

  • de Jong, S. M., 1994. Derivation of Vegetative Variables from a Landsat TM Image for Modelling Soil Erosion. Earth Surface Processes and Landforms, 19(2): 165–178

    Article  Google Scholar 

  • Eastman, J. R., Fulk, M., 1993. Long Sequence Time-Series Map Evaluation Using Standardized Principal Components. Photogrammetric Engineering and Remote Sensing, 59(6): 991–996

    Google Scholar 

  • Erencin, Z., 2000. C-Factor Mapping Using Remote Sensing and GIS-A Case Study of LOM Sak/Lom Kao, Thailand: [Dissertation]. ITC, Holland

    Google Scholar 

  • He, K. Q., Li, X. R., Yan, X. Q., et al., 2008. The Landslides in the Three Gorges Reservoir Region, China and the Effects of Water Storage and Rain on Their Stability. Environmental Geology, 55(1): 55–63

    Article  Google Scholar 

  • Huang, Z. Q., Zhou, W. C., Zhou, J. M., et al., 2006. Land Use of the Three Gorges Reservoir Area and the Effect on Its Landscape Pattern in the Recent 50 Years. Wuhan University Journal of Natural Sciences, 11(4): 910–914

    Article  Google Scholar 

  • Jensen, J. R., 2000. Remote Sensing of the Environment: An Earth Resource Perspective. Prentice Hall, New Jersey. 544

    Google Scholar 

  • Lillesand, T. M., Kiefer, R. W., Chipman, J. W., 2007. Remote Sensing and Image Interpretation. 6th Edition. John Wiley and Sons, New York. 768

    Google Scholar 

  • Liu, Y., Luo, Z., 2005. A Study on Estimation of the Amount of Soil Erosion in Small Watershed Based on GIS: A Case Study in the Three Gorge Area of China. International Geoscience and Remote Sensing Symposium Proceedings, 3: 1859–1863

    Google Scholar 

  • McDonald, B., Webber, M., Duan, Y. F., 2008. Involuntary Resettlement as an Opportunity for Development: The Case of Urban Resettlers of the Three Gorges Project, China. Journal of Refugee Studies, 21(1): 82–102

    Article  Google Scholar 

  • Meng, Q. H., Fu, B. J., Yang, L. Z., 2001. Effects of Land Use on Soil Erosion and Nutrient Loss in the Three Gorges Reservoir Area, China. Soil Use and Management, 17(4): 288–291

    Article  Google Scholar 

  • Neubert, M., Meinel, G., 2005. Atmosphärische und Topographische Korrektur von IKONOS-Daten mit ATCOR. In: Strobl, J., Blaschke, T., Griesebner, G., eds., Angewandte Geoinformatik 2005. Beiträge zum 17, AGIT-Symposium, Salzburg, Heidelberg, Wichmann. 503–512 (in German)

  • Pimentel, D., 2006. Soil Erosion: A Food and Environmental Threat. Environment Development and Sustainability, 8(1): 119–137

    Article  Google Scholar 

  • Renard, K. G., Foster, G. R., Weesies, G. A., et al., 1997. Predicting Soil Erosion by Water: A Guide to Conservation Planning with the Revised Universal Soil Loss Equation (RUSLE). USDA, Agriculture Handbook, Washington, DC. 703, 384

    Google Scholar 

  • Richards, J. A., Jia, X., 2006. Remote Sensing Digital Image Analysis: An Introduction. 4th Edition. Springer-Verlag, Berlin. 439

    Google Scholar 

  • Richter, R., 2010. Atmospheric/Topographic Correction for Satellite Imagery (ATCOR 2/3 User Guide, Version 7.1, January 2008). 165. http://atcor.ch/pdf/atcor3_manual.pdf

  • Rouse, J. W., Haas, R. W., Schell, J. A., et al., 1974. Monitoring the Vernal Advancement and Retrogradation (Greenwave Effect) of Natural Vegetation. NASA/GSFCT Type III Final Report, Greenbelt, MD, USA

  • Seeber, C., Hartmann, H., Xiang, W., et al., 2010. Land Use Change and Causes in the Xiangxi Catchment, Three Gorges Area Derived from Multispectral Data. Journal of Earth Science, 21(6): 846–855

    Article  Google Scholar 

  • Shi, Z. H., Cai, C. F., Ding, S. W., et al., 2004. Soil Conservation Planning at the Small Watershed Level Using RUSLE with GIS: A Case Study in the Three Gorges Area of China. Catena, 55(1): 33–48

    Article  Google Scholar 

  • Shi, X. Z., Yu, D. S., Xu, S. X., et al., 2010. Cross-Reference for Relating Genetic Soil Classification of China with WRB at Different Scales. Geoderma, 155(3–4): 344–350

    Article  Google Scholar 

  • Schönbrodt, S., Ehret, D., Seeber, C., et al.. Geo-risks in the Highly Dynamic Three Gorges Reservoir Ecosystem: Interactions of Soil Erosion, Mass Movements, and Land Use. Earth Surface Processes and Landforms (Submitted)

  • Sun, X. X., Zhang, J. X., Liu, Z. J., 2008. Vegetation Cover Annual Changes Based on MODIS/TERRA NDVI in the Three Gorges Reservoir Area. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 37(Part B7): 1397–1400

    Google Scholar 

  • Suriyaprasit, M., Shrestha, D. P., 2008. Deriving Land Use and Canopy Cover Factor from Remote Sensing and Field Data in Inaccessible Mountainous Terrain for Use in Soil Erosion Modelling. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 37(Part B7): 1747–1750

    Google Scholar 

  • Tan, Y., Bryan, B., Hugo, G., 2005. Development, Land-Use Change and Rural Resettlement Capacity: A Case Study of the Three Gorges Project, China. Australian Geographer, 36(2): 201–220

    Article  Google Scholar 

  • Tarboton, D. G., 1997. A New Method for the Determination of Flow Directions and Upslope Areas in Grid Digital Elevation Models. Water Resources Research, 33(2): 309–319

    Article  Google Scholar 

  • Wang, G., Wente, S., Gertner, G. Z., et al., 2002. Improvement in Mapping Vegetation Cover Factor for the Universal Soil Loss Equation by Geostatistical Methods with Landsat Thematic Mapper Images. International Journal of Remote Sensing, 23(18): 3649–3667

    Article  Google Scholar 

  • Wischmeier, W. H., Smith, D. D., 1965. Predicting Rainfall-Erosion Losses from Cropland East of the Rocky Mountains-Guide for Selection of Practices for Soil and Water Conservation. USDA, Agriculture Handbook, Washington DC. 282

    Google Scholar 

  • Wischmeier, W. H., Smith, D. D., 1978. Predicting Rainfall Erosion Losses: A Guide to Conservation Planning. USDA, Agriculture Handbook, Washington DC. 537

    Google Scholar 

  • Xu, Y. Q., Peng, J., Shao, X. M., 2009. Assessment of Soil Erosion Using RUSLE and GIS: A Case Study of the Maotiao River Watershed, Guizhou Province, China. Environmental Geology, 56(8): 1643–1652

    Article  Google Scholar 

  • Yang, Y. S., Shi, D. M., 1994. Study on Soil Erosion in the Three Gorges Area of the Changgjiang River. Southeast Univ. Press, Nanjing (in Chinese)

    Google Scholar 

  • Zhou, P., 2008. Landscape-Scale Soil Erosion Modeling and Ecological Restoration for a Mountainous Watershed in Sichuan, China: [Dissertation]. Department of Forest Ecology, University of Helsinki, Helsink

    Google Scholar 

  • Zhou, P., Luukkanen, O., Tokola, T., et al., 2008. Effect of Vegetation Cover on Soil Erosion in a Mountainous Watershed. Catena, 75(3): 319–325

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarah Schönbrodt.

Additional information

This study was supported by the Federal German Ministry of Education and Research (BMBF) (No. 03 G 0669), and coordinated by the German Jülich Research Centre (FZJ).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schönbrodt, S., Saumer, P., Behrens, T. et al. Assessing the USLE crop and management factor C for soil erosion modeling in a large mountainous watershed in Central China. J. Earth Sci. 21, 835–845 (2010). https://doi.org/10.1007/s12583-010-0135-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12583-010-0135-8

Key Words

Navigation