Skip to main content
Log in

“Just a spoonful of sugar...”: import of sialic acid across bacterial cell membranes

  • Review
  • Published:
Biophysical Reviews Aims and scope Submit manuscript

Abstract

Eukaryotic cell surfaces are decorated with a complex array of glycoconjugates that are usually capped with sialic acids, a large family of over 50 structurally distinct nine-carbon amino sugars, the most common member of which is N-acetylneuraminic acid. Once made available through the action of neuraminidases, bacterial pathogens and commensals utilise host-derived sialic acid by degrading it for energy or repurposing the sialic acid onto their own cell surface to camouflage the bacterium from the immune system. A functional sialic acid transporter has been shown to be essential for the uptake of sialic acid in a range of human bacterial pathogens and important for host colonisation and persistence. Here, we review the state-of-play in the field with respect to the molecular mechanisms by which these bio-nanomachines transport sialic acids across bacterial cell membranes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abramson J, Wright EM (2009) Structure and function of Na(+)-symporters with inverted repeats. Curr Opin Struct Biol 19:425–432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Abramson J, Smirnova I, Kasho V, Verner G, Kaback HR, Iwata S (2003) Structure and mechanism of the lactose permease of Escherichia coli. Science 301:610–615

    Article  CAS  PubMed  Google Scholar 

  • Almagro-Moreno S, Boyd EF (2009) Insights into the evolution of sialic acid catabolism among bacteria. BMC Evol Biol 9:118

    Article  PubMed  PubMed Central  Google Scholar 

  • Bouchet V, Hood DW, Li J et al (2003) Host-derived sialic acid is incorporated into Haemophilus influenzae lipopolysaccharide and is a major virulence factor in experimental otitis media. Proc Natl Acad Sci U S A 100:8898–8903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caing-Carlsson R, Goyal P, Sharma A et al (2017) Crystal structure of N-acetylmannosamine kinase from Fusobacterium nucleatum. Acta Crystallogr F Struct Biol Commun 73:356–362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chang D-E, Smalley DJ, Tucker DL et al (2004) Carbon nutrition of Escherichia coli in the mouse intestine. Proc Natl Acad Sci U S A 101:7427–7432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Condemine G, Berrier C, Plumbridge J, Ghazi A (2005) Function and expression of an N-acetylneuraminic acid-inducible outer membrane channel in Escherichia coli. J Bacteriol 187:1959–1965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deng D, Yan N (2016) GLUT, SGLT, and SWEET: structural and mechanistic investigations of the glucose transporters. Protein Sci 25:546–558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deng D, Xu C, Sun P et al (2014) Crystal structure of the human glucose transporter GLUT1. Nature 510:121–125

    Article  CAS  PubMed  Google Scholar 

  • Deng D, Sun P, Yan C et al (2015) Molecular basis of ligand recognition and transport by glucose transporters. Nature 526:391–396

    Article  CAS  PubMed  Google Scholar 

  • Doeven MK, Abele R, Tampé R, Poolman B (2004) The binding specificity of OppA determines the selectivity of the oligopeptide ATP-binding cassette transporter. J Biol Chem 279:32301–32307

    Article  CAS  PubMed  Google Scholar 

  • Eitinger T, Rodionov DA, Grote M, Schneider E (2011) Canonical and ECF-type ATP-binding cassette importers in prokaryotes: diversity in modular organization and cellular functions. FEMS Microbiol Rev 35:3–67

    Article  CAS  PubMed  Google Scholar 

  • Eskandari S, Loo DD, Dai G, Levy O, Wright EM, Carrasco N (1997) Thyroid Na+/I− symporter. Mechanism, stoichiometry, and specificity. J Biol Chem 272:27230–27238

    Article  CAS  PubMed  Google Scholar 

  • Faham S, Watanabe A, Besserer GM et al (2008) The crystal structure of a sodium galactose transporter reveals mechanistic insights into Na+/sugar symport. Science 321:810–814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Forward JA, Behrendt MC, Wyborn NR, Cross R, Kelly DJ (1997) TRAP transporters: a new family of periplasmic solute transport systems encoded by the dctPQM genes of Rhodobacter capsulatus and by homologs in diverse gram-negative bacteria. J Bacteriol 179:5482–5493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Galdiero S, Falanga A, Cantisani M et al (2012) Microbe–host interactions: structure and role of Gram-negative bacterial porins. Curr Protein Pept Sci 13:843–854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gangi Setty T, Cho C, Govindappa S, Apicella MA, Ramaswamy S (2014) Bacterial periplasmic sialic acid-binding proteins exhibit a conserved binding site. Acta Crystallogr D Struct Biol 70:1801–1811

    Article  CAS  Google Scholar 

  • Gruteser N, Marin K, Krämer R, Thomas GH (2012) Sialic acid utilization by the soil bacterium Corynebacterium glutamicum. FEMS Microbiol Lett 336:131–138

    Article  CAS  PubMed  Google Scholar 

  • Higgins CF (1992) ABC transporters: from microorganisms to man. Annu Rev Cell Biol 8:67–113

    Article  CAS  PubMed  Google Scholar 

  • Hohl M, Briand C, Grütter MG, Seeger MA (2012) Crystal structure of a heterodimeric ABC transporter in its inward-facing conformation. Nat Struct Mol Biol 19:395–402

    Article  CAS  PubMed  Google Scholar 

  • Holder JW, Ulrich JC, DeBono AC et al (2011) Comparative and functional genomics of Rhodococcus opacus PD630 for biofuels development. PLoS Genet 7:e1002219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang Y, Lemieux MJ, Song J, Auer M, Wang DN (2003) Structure and mechanism of the glycerol-3-phosphate transporter from Escherichia coli. Science 301:616–620

    Article  CAS  PubMed  Google Scholar 

  • Huang Y-L, Chassard C, Hausmann M, Von Itzstein M, Hennet T (2015) Sialic acid catabolism drives intestinal inflammation and microbial dysbiosis in mice. Nat Commun 6:8141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jeong HG, Oh MH, Kim BS, Lee MY, Han HJ, Choi SH (2009) The capability of catabolic utilization of N-acetylneuraminic acid, a sialic acid, is essential for Vibrio vulnificus pathogenesis. Infect Immun 77:3209–3217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnston JW, Zaleski A, Allen S et al (2007) Regulation of sialic acid transport and catabolism in Haemophilus influenzae. Mol Microbiol 66:26–39

    Article  CAS  PubMed  Google Scholar 

  • Johnston JW, Coussens NP, Allen S et al (2008) Characterization of the N-acetyl-5-neuraminic acid-binding site of the extracytoplasmic solute receptor (SiaP) of nontypeable Haemophilus influenzae strain 2019. J Biol Chem 283:855–865

    Article  CAS  PubMed  Google Scholar 

  • Jones PM, George AM (2004) The ABC transporter structure and mechanism: perspectives on recent research. Cell Mol Life Sci 61:682–699

    Article  CAS  PubMed  Google Scholar 

  • Kelly DJ, Thomas GH (2001) The tripartite ATP-independent periplasmic (TRAP) transporters of bacteria and archaea. FEMS Microbiol Rev 25:405–424

    Article  CAS  PubMed  Google Scholar 

  • Lewis AL, Lewis WG (2012) Host sialoglycans and bacterial sialidases: a mucosal perspective. Cell Microbiol 14:1174–1182

    Article  CAS  PubMed  Google Scholar 

  • Locher KP, Lee AT, Rees DC (2002) The E. coli BtuCD structure: a framework for ABC transporter architecture and mechanism. Science 296:1091–1098

    Article  CAS  PubMed  Google Scholar 

  • Mackenzie B, Loo DD, Wright EM (1998) Relationships between Na+/glucose cotransporter (SGLT1) currents and fluxes. J Membr Biol 162:101–106

    Article  CAS  PubMed  Google Scholar 

  • Maiden MC, Davis EO, Baldwin SA, Moore DC, Henderson PJ (1987) Mammalian and bacterial sugar transport proteins are homologous. Nature 325:641–643

    Article  CAS  PubMed  Google Scholar 

  • Marion C, Aten AE, Woodiga SA, King SJ (2011a) Identification of an ATPase, MsmK, which energizes multiple carbohydrate ABC transporters in Streptococcus pneumoniae. Infect Immun 79:4193–4200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marion C, Burnaugh AM, Woodiga SA, King SJ (2011b) Sialic acid transport contributes to pneumococcal colonization. Infect Immun 79:1262–1269

    Article  CAS  PubMed  Google Scholar 

  • Martinez J, Steenbergen S, Vimr E (1995) Derived structure of the putative sialic acid transporter from Escherichia coli predicts a novel sugar permease domain. J Bacteriol 177:6005–6010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mulligan C, Geertsma ER, Severi E, Kelly DJ, Poolman B, Thomas GH (2009) The substrate-binding protein imposes directionality on an electrochemical sodium gradient-driven TRAP transporter. Proc Natl Acad Sci U S A 106:1778–1783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mulligan C, Fischer M, Thomas GH (2011) Tripartite ATP-independent periplasmic (TRAP) transporters in bacteria and archaea. FEMS Microbiol Rev 35:68–86

    Article  CAS  PubMed  Google Scholar 

  • Mulligan C, Leech AP, Kelly DJ, Thomas GH (2012) The membrane proteins SiaQ and SiaM form an essential stoichiometric complex in the sialic acid tripartite ATP-independent periplasmic (TRAP) transporter SiaPQM (VC1777–1779) from Vibrio cholerae. J Biol Chem 287:3598–3608

    Article  CAS  PubMed  Google Scholar 

  • Ng KM, Ferreyra JA, Higginbottom SK et al (2013) Microbiota-liberated host sugars facilitate post-antibiotic expansion of enteric pathogens. Nature 502:96–99

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nomura N, Verdon G, Kang HJ et al (2015) Structure and mechanism of the mammalian fructose transporter GLUT5. Nature 526:397–401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • North RA, Kessans SA, Atkinson SC et al (2013) Cloning, expression, purification, crystallization and preliminary X-ray diffraction studies of N-acetylneuraminate lyase from methicillin-resistant Staphylococcus aureus. Acta Crystallogr F Struct Biol Commun 69:306–312

    Article  CAS  Google Scholar 

  • North RA, Kessans SA, Griffin MDW et al (2014a) Cloning, expression, purification, crystallization and preliminary X-ray diffraction analysis of N-acetylmannosamine-6-phosphate 2-epimerase from methicillin-resistant Staphylococcus aureus. Acta Crystallogr F Struct Biol Commun 70:650–655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • North RA, Seizova S, Stampfli A et al (2014b) Cloning, expression, purification, crystallization and preliminary X-ray diffraction analysis of N-acetylmannosamine kinase from methicillin-resistant Staphylococcus aureus. Acta Crystallogr F Struct Biol Commun 70:643–649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • North RA, Watson AJA, Pearce FG et al (2016) Structure and inhibition of N-acetylneuraminate lyase from methicillin-resistant Staphylococcus aureus. FEBS Lett 590:4414–4428

    Article  CAS  PubMed  Google Scholar 

  • Oldham ML, Davidson AL, Chen J (2008) Structural insights into ABC transporter mechanism. Curr Opin Struct Biol 18:726–733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olson ME, King JM, Yahr TL, Horswill AR (2013) Sialic acid catabolism in Staphylococcus aureus. J Bacteriol 195:1779–1788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pezzicoli A, Ruggiero P, Amerighi F, Telford JL, Soriani M (2012) Exogenous sialic acid transport contributes to group B streptococcus infection of mucosal surfaces. J Infect Dis 206:924–931

    Article  CAS  PubMed  Google Scholar 

  • Phansopa C, Roy S, Rafferty JB et al (2014) Structural and functional characterization of NanU, a novel high-affinity sialic acid-inducible binding protein of oral and gut-dwelling Bacteroidetes species. Biochem J 458:499–511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poolman B, Konings WN (1993) Secondary solute transport in bacteria. Biochim Biophys Acta 1183:5–39

    Article  CAS  PubMed  Google Scholar 

  • Post DMB, Mungur R, Gibson BW, Munson RS (2005) Identification of a novel sialic acid transporter in Haemophilus ducreyi. Infect Immun 73:6727–6735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ressl S, Terwisscha van Scheltinga AC, Vonrhein C, Ott V, Ziegler C (2009) Molecular basis of transport and regulation in the Na(+)/betaine symporter BetP. Nature 458:47–52

    Article  CAS  PubMed  Google Scholar 

  • Robbe-Masselot C, Maes E, Rousset M, Michalski JC, Capon C (2009) Glycosylation of human fetal mucins: a similar repertoire of O-glycans along the intestinal tract. Glycoconj J 26:397–413

    Article  CAS  PubMed  Google Scholar 

  • Saurin W, Hofnung M, Dassa E (1999) Getting in or out: early segregation between importers and exporters in the evolution of ATP-binding cassette (ABC) transporters. J Mol Evol 48:22–41

    Article  CAS  PubMed  Google Scholar 

  • Schultz SG, Curran PF (1970) Coupled transport of sodium and organic solutes. Physiol Rev 50:637–718

    Article  CAS  PubMed  Google Scholar 

  • Severi E, Randle G, Kivlin P et al (2005) Sialic acid transport in Haemophilus influenzae is essential for lipopolysaccharide sialylation and serum resistance and is dependent on a novel tripartite ATP-independent periplasmic transporter. Mol Microbiol 58:1173–1185

    Article  CAS  PubMed  Google Scholar 

  • Severi E, Hood DW, Thomas GH (2007) Sialic acid utilization by bacterial pathogens. Microbiology 153:2817–2822

    Article  CAS  PubMed  Google Scholar 

  • Severi E, Müller A, Potts JR et al (2008) Sialic acid mutarotation is catalyzed by the Escherichia coli beta-propeller protein YjhT. J Biol Chem 283:4841–4849

    Article  CAS  PubMed  Google Scholar 

  • Severi E, Hosie AHF, Hawkhead JA, Thomas GH (2010) Characterization of a novel sialic acid transporter of the sodium solute symporter (SSS) family and in vivo comparison with known bacterial sialic acid transporters. FEMS Microbiol Lett 304:47–54

    Article  CAS  PubMed  Google Scholar 

  • Shintre CA, Pike ACW, Li Q et al (2013) Structures of ABCB10, a human ATP-binding cassette transporter in apo- and nucleotide-bound states. Proc Natl Acad Sci U S A 110:9710–9715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sillanaukee P, Pönniö M, Jääskeläinen IP (1999) Occurrence of sialic acids in healthy humans and different disorders. Eur J Clin Investig 29:413–425

    Article  CAS  Google Scholar 

  • Steenbergen SM, Jirik JL, Vimr ER (2009) YjhS (NanS) is required for Escherichia coli to grow on 9-O-acetylated N-acetylneuraminic acid. J Bacteriol 191:7134–7139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun L, Zeng X, Yan C et al (2012) Crystal structure of a bacterial homologue of glucose transporters GLUT1–4. Nature 490:361–366

    Article  CAS  PubMed  Google Scholar 

  • Turk E, Kim O, le Coutre J et al (2000) Molecular characterization of Vibrio parahaemolyticus vSGLT: a model for sodium-coupled sugar cotransporters. J Biol Chem 275:25711–25716

    Article  CAS  PubMed  Google Scholar 

  • Vimr ER, Troy FA (1985) Identification of an inducible catabolic system for sialic acids (nan) in Escherichia coli. J Bacteriol 164:845–853

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vimr ER, Kalivoda KA, Deszo EL, Steenbergen SM (2004) Diversity of microbial sialic acid metabolism. Microbiol Mol Biol Rev 68:132–153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walters DM, Stirewalt VL, Melville SB (1999) Cloning, sequence, and transcriptional regulation of the operon encoding a putative N-acetylmannosamine-6-phosphate epimerase (nanE) and sialic acid lyase (nanA) in Clostridium perfringens. J Bacteriol 181:4526–4532

    CAS  PubMed  PubMed Central  Google Scholar 

  • Weyand S, Shimamura T, Yajima S et al (2008) Structure and molecular mechanism of a nucleobase–cation–symport-1 family transporter. Science 322:709–713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wirth C, Condemine G, Boiteux C, Bernèche S, Schirmer T, Peneff CM (2009) NanC crystal structure, a model for outer-membrane channels of the acidic sugar-specific KdgM porin family. J Mol Biol 394:718–731

    Article  CAS  PubMed  Google Scholar 

  • Woo J-S, Zeltina A, Goetz BA, Locher KP (2012) X-ray structure of the Yersinia pestis heme transporter HmuUV. Nat Struct Mol Biol 19:1310–1315

    Article  CAS  PubMed  Google Scholar 

  • Wright EM, Loo DDF, Hirayama BA, Turk E (2004) Surprising versatility of Na+-glucose cotransporters: SLC5. Physiology (Bethesda) 19:370–376

    CAS  Google Scholar 

  • Yamashita A, Singh SK, Kawate T, Jin Y, Gouaux E (2005) Crystal structure of a bacterial homologue of Na+/cl-dependent neurotransmitter transporters. Nature 437:215–223

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

R.C.J.D. and R.A.N. acknowledge the following for funding support, in part: (1) the New Zealand Royal Society Marsden Fund (15-UOC032) and (2) the Biomolecular Interaction Centre, University of Canterbury. The project has received funding from the European Union’s Seventh Framework Programme for research, technological development and demonstration under grant agreement no. 608743 (to R.F.). This work was also supported by grants from the Swedish Research Council (2011-5790 to R.F.), the Swedish Research Council Formas (2010-1759 to R.F. and 221-2013-730 to W.Y.W.), the Swedish Governmental Agency for Innovation Systems (VINNOVA) (2013-04655 and 2017-00180 to R.F.), Carl Tryggers Stiftelse för Vetenskaplig Forskning (11:147 to R.F.), EMBO (1163-2014 to P.G. and 584-2014 to R.A.N.) and the Centre for Antibiotic Resistance Research (CARe) at the University of Gothenburg (to R.F.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rosmarie Friemann or Renwick C. J. Dobson.

Ethics declarations

Conflict of interest

Rachel A. North declares that she has no conflict of interest. Christopher R. Horne declares that he has no conflict of interest. James S. Davies declares that he has no conflict of interest. Daniela M. Remus declares that she has no conflict of interest. Andrew C. Muscroft-Taylor declares that he has no conflict of interest. Parveen Goyal declares that he has no conflict of interest. Weixiao Yuan Wahlgren declares that she has no conflict of interest. S. Ramaswamy declares that he has no conflict of interest. Rosmarie Friemann declares that she has no conflict of interest. Renwick C. J. Dobson declares that he has no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

This article is part of a Special Issue on ‘Biomolecules to Bio-nanomachines - Fumio Arisaka 70th Birthday’ edited by Damien Hall, Junichi Takagi and Haruki Nakamura

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

North, R.A., Horne, C.R., Davies, J.S. et al. “Just a spoonful of sugar...”: import of sialic acid across bacterial cell membranes. Biophys Rev 10, 219–227 (2018). https://doi.org/10.1007/s12551-017-0343-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12551-017-0343-x

Keywords

Navigation