Skip to main content
Log in

Effects of Ta Content on Thermodynamic Properties and Transformation Temperatures of Shape Memory NiTi Alloy

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

In the present work, Ni32-x-Ti-Ta18+x (x = 0, 2, 3, 4, 5, 6, 7, 8) shape memory alloys, produced by arc-melting method. Then, differential scanning calorimetry (DSC), optical microscopy (OM), x-ray diffraction (XRD), and Vickers micro-hardness measurements were carried out to investigate thermodynamic parameters, microstructure, crystal structure, and mechanical properties of the alloys, respectively. The DSC results showed that, as the amount of Ta increased, the phase transformation temperatures of the specimens significantly changed. In addition, increasing of Ta composition raised the mass density and electron participation of NiTi alloy, and thus, the vibrational term of entropy overcomes the electron participation; consequently, the total entropy declined in the alloys. It is found that OM images possess a dendritic microstructure, where by increasing the amount of Ta, the dendrites length increase while random orientations decrease. Moreover, XRD patterns exhibited the existence of each austenite phase (B2), martensite phase (B19ʹ), and β-Ta riched phase in all samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. J.M. Jani et al., A review of shape memory alloy research, applications and opportunities (1980-2015). Mater. Des. 56, 1078–1113 (2014)

    Article  Google Scholar 

  2. M. Kök, G. Ateş, The effect of addition of various elements on properties of NiTi-based shape memory alloys for biomedical application. Eur. Phys. J. Plus 132(4), 185 (2017)

    Article  Google Scholar 

  3. J. Ryhänen et al., In vivo biocompatibility evaluation of nickel-titanium shape memory metal alloy: muscle and perineural tissue responses and encapsule membrane thickness. J. Biomed. Mater. Res. 41(3), 481–488 (1998)

    Article  Google Scholar 

  4. C. Chluba et al., Ultralow-fatigue shape memory alloy films. Science 348(6238), 1004–1007 (2015)

    Article  CAS  Google Scholar 

  5. W. Yan, Theoretical investigation of wear-resistance mechanism of superelastic shape memory alloy NiTi. Mater. Sci. Eng. A 427(1–2), 348–355 (2006)

    Article  Google Scholar 

  6. S. Lederlé, Issues in the Design of Shape Memory Alloy Actuators (Massachusetts Institute of Technology, Cambridge, 2002)

    Google Scholar 

  7. M. Aboutalebi et al., Influences of aging and thermomechanical treatments on the martensitic transformation and superelasticity of highly Ni-rich Ti-51.5 at.% Ni shape memory alloy. Thermochim. Acta 616, 14–19 (2015)

    Article  CAS  Google Scholar 

  8. M. Kök, et al., The change of transformation temperature on NiTi shape memory alloy by pressure and thermal ageing, in Journal of Physics: Conference Series (IOP Publishing, 2016)

  9. G. Firstov et al., Surface oxidation of NiTi shape memory alloy. Biomaterials 23(24), 4863–4871 (2002)

    Article  CAS  Google Scholar 

  10. F. Dagdelen, E. Ercan, The surface oxidation behavior of Ni–45.16% Ti shape memory alloys at different temperatures. J. Therm. Anal. Calorim. 115(1), 561–565 (2014)

    Article  CAS  Google Scholar 

  11. J. Li et al., The effect of Zr on the transformation behaviors, microstructure and the mechanical properties of Ti-Ni-Cu shape memory alloys. J. Alloys Compd. 747, 348–353 (2018)

    Article  CAS  Google Scholar 

  12. H.E. Karaca et al., Microstructure and transformation related behaviors of a Ni45. 3Ti29. 7Hf20Cu5 high temperature shape memory alloy. Mater. Sci. Eng. A 627, 82–94 (2015)

    Article  CAS  Google Scholar 

  13. S. Habibzadeh, D. Shum-Tim, S. Omanovic, Surface and electrochemical characterization of IrTi-oxide coatings: towards the improvement of radiopacity for coronary stent applications. Int. J. Electrochem. Sci. 8(6291), e6310 (2013)

    Google Scholar 

  14. C. Park et al., Mechanically stable tantalum coating on a nano-roughened NiTi stent for enhanced radiopacity and biocompatibility. Surf. Coat. Technol. 305, 139–145 (2016)

    Article  CAS  Google Scholar 

  15. Y. Zhou et al., Tantalum coated NiTi alloy by PIIID for biomedical application. Surf. Coat. Technol. 228, S2–S6 (2013)

    Article  CAS  Google Scholar 

  16. Y. Cheng et al., Surface modification of NiTi alloy with tantalum to improve its biocompatibility and radiopacity. J. Mater. Sci. 41(15), 4961 (2006)

    Article  CAS  Google Scholar 

  17. A. Biesiekierski et al., A new look at biomedical Ti-based shape memory alloys. Acta Biomater. 8(5), 1661–1669 (2012)

    Article  CAS  Google Scholar 

  18. R. Wasilewski et al., Homogeneity range and the martensitic transformation in TiNi. Metallurgical Transactions 2(1), 229–238 (1971)

    Article  CAS  Google Scholar 

  19. J. Khalil-Allafi, B. Amin-Ahmadi, The effect of chemical composition on enthalpy and entropy changes of martensitic transformations in binary NiTi shape memory alloys. J. Alloys Compd. 487(1–2), 363–366 (2009)

    Article  CAS  Google Scholar 

  20. B.-Y. Li et al., Transformation behavior of sintered porous NiTi alloys. Metall. Mater. Trans. A 30(11), 2753–2756 (1999)

    Article  Google Scholar 

  21. N. Morgan, C. Friend, The effect of thermal cycling and applied stress level on post cycling—stress free transformation behaviour in NiTi alloys, in Journal de Physique IV (Proceedings) (EDP Sciences, 2003)

  22. I.N. Qader, M. Kök, F. Dağdelen, Effect of heat treatment on thermodynamics parameters, crystal and microstructure of (Cu-Al-Ni-Hf) shape memory alloy. Physica B 553, 1–5 (2019)

    Article  CAS  Google Scholar 

  23. D.C. Swift et al., Thermodynamically complete equations of state for nickel-titanium alloy. J. Appl. Phys. 98(9), 093512 (2005)

    Article  Google Scholar 

  24. B.-C. Chang, J.A. Shaw, M.A. Iadicola, Thermodynamics of shape memory alloy wire: modeling, experiments, and application. Contin. Mech. Thermodyn. 18(1–2), 83–118 (2006)

    Article  CAS  Google Scholar 

  25. T. Waitz, V. Kazykhanov, H. Karnthaler, Martensitic phase transformations in nanocrystalline NiTi studied by TEM. Acta Mater. 52(1), 137–147 (2004)

    Article  CAS  Google Scholar 

  26. V. Khovailo et al., Entropy change at the martensitic transformation in ferromagnetic shape memory alloys Ni 2 + x Mn 1–x Ga. J. Appl. Phys. 93(10), 8483–8485 (2003)

    Article  CAS  Google Scholar 

  27. R. Romero, J. Pelegrina, Entropy change between the β phase and the martensite in Cu-based shape-memory alloys. Phys. Rev. B 50(13), 9046 (1994)

    Article  CAS  Google Scholar 

  28. V. Zlıtıne, K. Lıtje, Contınuous Vertıcal Castıng of a NiTi Alloy. Mater. Tehnol. 50(6), 981–988 (2016)

    Article  Google Scholar 

  29. F. Dagdelen, Y. Aydogdu, Transformation behavior in NiTi–20Ta and NiTi–20Nb SMAs. J. Therm. Anal. Calorim. 2018, 1–6 (2018)

    Google Scholar 

  30. S.-H. Chang, K.-H. Lin, S.-K. Wu, Effects of cold-rolling/aging treatments on the shape memory properties of Ti49. 3Ni50. 7 shape memory alloy. Materials 10(7), 704 (2017)

    Article  Google Scholar 

  31. M.A. Baumann, Nickel–titanium: options and challenges. Dental Clin. 48(1), 55–67 (2004)

    Google Scholar 

  32. F. Gil, J. Manero, J. Planell, Relevant aspects in the clinical applications of NiTi shape memory alloys. J. Mater. Sci. Mater. Med. 7(7), 403–406 (1996)

    Article  CAS  Google Scholar 

  33. Y. Motemani et al., Effect of cooling rate on the phase transformation behavior and mechanical properties of Ni-rich NiTi shape memory alloy. J. Alloys Compd. 469(1–2), 164–168 (2009)

    Article  CAS  Google Scholar 

  34. M.E. Mitwally, M. Farag, Effect of cold work and annealing on the structure and characteristics of NiTi alloy. Mater. Sci. Eng. A 519(1–2), 155–166 (2009)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by Firat University Research-Project Unit under Project No: FF.-16.41, FF-17.08.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Dagdelen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dagdelen, F., Kok, M. & Qader, I.N. Effects of Ta Content on Thermodynamic Properties and Transformation Temperatures of Shape Memory NiTi Alloy. Met. Mater. Int. 25, 1420–1427 (2019). https://doi.org/10.1007/s12540-019-00298-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-019-00298-z

Keywords

Navigation