Skip to main content
Log in

Effect of solidification path and contraction on the cracking susceptibility of carbon peritectic steels

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

The solidification path and contraction generated during the solidification of three carbon steels were studied. Two of the carbon steels were of hypo-peritectic chemical composition, with 0.11 % C and 0.15 % C, while one of the carbon steels were hyper-peritectic with 0.16 % C. The steels with 0.11 % C and 0.16 % C solidified as expected due to their chemical composition. In contrast, the chemically hypo-peritectic steel with 0.15 % C solidified as hyper-peritectic steel, which was associated with the microsegregation of Mn. For the steel exhibiting a hypo-peritectic solidification path, peritectic transformation occurred at solid fraction values higher than 0.9, where it was assumed that the contraction generated in the mushy shell cannot be fed by the liquid. However, for steels exhibiting a hyper-peritectic solidification path, peritectic transformation began at solid fraction values lower than 0.9, where the contraction generated by the peritectic transformation was partly fed by the liquid. Hence, the highest cracking susceptibility was associated with the hypo-peritectic solidification mode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Mizukami, A. Yamanaka, and T. Watanabe, ISIJ Int. 42, 964 (2002).

    Article  CAS  Google Scholar 

  2. T. W. Clyne, M. Wolf, and W. Kurz, Metall. Mater. Trans. 13B, 259 (1982).

    CAS  ADS  Google Scholar 

  3. K. H. Kim, T. J. Yeo, K. H. Oh, and D. N. Lee, ISIJ Int. 36, 284 (1996).

    Article  CAS  Google Scholar 

  4. E. T. Turkdogan, Fundamentals of Steelmaking, p. 104, The Institute of Materials, London (1996).

    Google Scholar 

  5. Y. M. Won, T. J. Yeo, D. J. Seol, and K. H. Oh, Metall. Mater. Trans. B 31B, 779 (2000).

    Article  CAS  ADS  Google Scholar 

  6. J. Konishi, M. Militzer, J. K. Brimacombe, and I. V. Samarasekera, Metall. Mater. Trans. B 33B, 413 (2002).

    Google Scholar 

  7. D. M. Stefanescu, ISIJ Int. 46, 786 (2006).

    Article  CAS  Google Scholar 

  8. C. Cicutti and R. Boerl, Steel Res. Int. 77, 194 (2006).

    CAS  Google Scholar 

  9. Y. M. Won, H. N. Han, T. J. Yeo, and K. H. Oh, ISIJ Int. 40, 129 (2000).

    Article  CAS  Google Scholar 

  10. Y. M. Won and B. G. Thomas, Metall. Mater. Trans. A 32A, 1755 (2001).

    Article  Google Scholar 

  11. W. R. I. A. Perkins, Proc. Int. Conf. organized by The Metals Society, London and L’institut the researches de la sidérurgie francaise (IRSID), and held in Biarritz, France (1976).

  12. J. K. Brimacombe, E. B. Hawbolt and F. Weinberg, Continuous Casting Heat Flow, Solidification and Crack Formation (ed., Bookcrafters ), p. 215, AIME, USA (1984).

    Google Scholar 

  13. H. Shibata, Y. Arai, M. Suzuki, and T. Emi, Metall. Mater. Trans. 31B, 981 (2000).

    CAS  Google Scholar 

  14. L. G. Zhu and R. V. Kumar, Ironmak. Steelmak. 34, 71 (2007).

    Article  Google Scholar 

  15. K. H. Kim, K. H. Oh, and D. N. Lee, Script. mater. 34, 301 (1996).

    Article  CAS  Google Scholar 

  16. E. Alfaro, M. Herrera, J. J. Ruiz, M. Castro, and H. Solis, ISIJ Int. 49, 851 (2009).

    Article  Google Scholar 

  17. J. Ruiz, M. Herrera, M. Castro, and H. Solis, ISIJ Int. 48, 459 (2008).

    Google Scholar 

  18. J. Miettinen, Scand. J. Metall. 22, 317 (1993).

    CAS  Google Scholar 

  19. Y. M. Won, K. H. Kim, T. J. Yeo, and K. H. Oh, ISIJ Int. 38, 1093 (1998).

    Article  CAS  Google Scholar 

  20. D. J. Seol, Y. M. Won, K. H. Oh, Y. C. Shin, and C. H. Yim, ISIJ Int. 40, 356 (2000).

    Article  CAS  Google Scholar 

  21. A. Thermo-Calc Software AB. The Phase Diagram in Multi-component Alloys, R, Foundation of Computational Thermodynamics, Stockholm, Sweden (2006).

    Google Scholar 

  22. DICTRA Software, A Tool for Simulation of Diffusional Transformations in Alloys, 24, Foundation of Computational Thermodynamics, Stockholm, Sweden, (2006).

    Google Scholar 

  23. S. Louhenkilpi, J. Miettinen, and L. Holappa, ISIJ Int. 46, 914 (2006).

    Article  CAS  Google Scholar 

  24. D. Brody and C. Flemings, Trans. Metall. Soc. AIME 236, 615 (1966).

    CAS  Google Scholar 

  25. A. Jablonka, K. Harste, and K. Schwerdtfeger, Steel Res. Int. 62, 24 (1991).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Herrera Trejo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Trejo, M.H., Lopez, E.A., Ruiz Mondragon, J.J. et al. Effect of solidification path and contraction on the cracking susceptibility of carbon peritectic steels. Met. Mater. Int. 16, 731–737 (2010). https://doi.org/10.1007/s12540-010-1006-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-010-1006-7

Keywords

Navigation