Skip to main content
Log in

NeuroPP: A Tool for the Prediction of Neuropeptide Precursors Based on Optimal Sequence Composition

  • Original Research Article
  • Published:
Interdisciplinary Sciences: Computational Life Sciences Aims and scope Submit manuscript

Abstract

Neuropeptides (NPs) are short secreted peptides produced mainly in the nervous system and digestive system. They activate signaling cascades to control a wide range of biological functions, such as metabolism, sensation, and behavior. NPs are typically produced from a larger NP precursor (NPP) which includes a signal peptide sequence, one or more NP sequences, and other sequences. With the drastic growth of unknown protein sequences generated in the post-genomic age, it is highly desired to develop computational methods for identifying NPP rapidly and efficiently. In this article, we developed a predictor for NPPs based on optimized sequence composition of single amino acid, dipeptide, and tripeptide. Evaluated with independent data set, the predictor showed excellent performance that achieved an accuracy of 88.65% with AUC of 0.95. The corresponding web server was developed, which is freely available at http://i.uestc.edu.cn/neuropeptide/neuropp/home.html. It can help relevant researchers to screen candidate NP precursor, shorten experimental cycle, and reduce costs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Brain SD, Cox HM (2006) Neuropeptides and their receptors: innovative science providing novel therapeutic targets. Br J Pharmacol 147(Suppl 1):S202–S211. https://doi.org/10.1038/sj.bjp.0706461

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Insel TR, Young LJ (2000) Neuropeptides and the evolution of social behavior. Curr Opinion Neurobiol 10(6):784–789

    Article  CAS  Google Scholar 

  3. Hokfelt T, Broberger C, Xu ZQ, Sergeyev V, Ubink R, Diez M (2000) Neuropeptides—an overview. Neuropharmacology 39(8):1337–1356

    Article  PubMed  CAS  Google Scholar 

  4. Funkelstein L, Beinfeld M, Minokadeh A, Zadina J, Hook V (2010) Unique biological function of cathepsin L in secretory vesicles for biosynthesis of neuropeptides. Neuropeptides 44(6):457–466. https://doi.org/10.1016/j.npep.2010.08.003

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Jekely G (2013) Global view of the evolution and diversity of metazoan neuropeptide signaling. Proc Natl Acad Sci USA 110(21):8702–8707. https://doi.org/10.1073/pnas.1221833110

    Article  PubMed  Google Scholar 

  6. Rholam M, Brakch N, Germain D, Thomas DY, Fahy C, Boussetta H, Boileau G, Cohen P (1995) Role of amino acid sequences flanking dibasic cleavage sites in precursor proteolytic processing. The importance of the first residue C-terminal of the cleavage site. Eur J Biochem 227(3):707–714

    Article  PubMed  CAS  Google Scholar 

  7. von Eggelkraut-Gottanka R, Beck-Sickinger AG (2004) Biosynthesis of peptide hormones derived from precursor sequences. Curr Med Chem 11(20):2651–2665

    Article  Google Scholar 

  8. von Heijne G (1990) The signal peptide. J Membr Biol 115(3):195–201

    Article  Google Scholar 

  9. Svensson M, Skold K, Svenningsson P, Andren PE (2003) Peptidomics-based discovery of novel neuropeptides. J Proteome Res 2(2):213–219

    Article  PubMed  CAS  Google Scholar 

  10. Che FY, Biswas R, Fricker LD (2005) Relative quantitation of peptides in wild-type and Cpe(fat/fat) mouse pituitary using stable isotopic tags and mass spectrometry. J Mass Spectrom 40(2):227–237. https://doi.org/10.1002/jms.742

    Article  PubMed  CAS  Google Scholar 

  11. Baggerman G, Boonen K, Verleyen P, De Loof A, Schoofs L (2005) Peptidomic analysis of the larval Drosophila melanogaster central nervous system by two-dimensional capillary liquid chromatography quadrupole time-of-flight mass spectrometry. J Mass Spectrom 40(2):250–260. https://doi.org/10.1002/jms.744

    Article  PubMed  CAS  Google Scholar 

  12. Loewenstein Y, Raimondo D, Redfern OC, Watson J, Frishman D, Linial M, Orengo C, Thornton J, Tramontano A (2009) Protein function annotation by homology-based inference. Genome Biol 10(2):207. https://doi.org/10.1186/gb-2009-10-2-207

    Article  PubMed  PubMed Central  Google Scholar 

  13. Hummon AB, Richmond TA, Verleyen P, Baggerman G, Huybrechts J, Ewing MA, Vierstraete E, Rodriguez-Zas SL, Schoofs L, Robinson GE, Sweedler JV (2006) From the genome to the proteome: uncovering peptides in the Apis brain. Science 314(5799):647–649. https://doi.org/10.1126/science.1124128

    Article  PubMed  CAS  Google Scholar 

  14. Liu F, Baggerman G, Schoofs L, Wets G (2006) Uncovering conserved patterns in bioactive peptides in Metazoa. Peptides 27(12):3137–3153. https://doi.org/10.1016/j.peptides.2006.08.021

    Article  PubMed  CAS  Google Scholar 

  15. Boutet E, Lieberherr D, Tognolli M, Schneider M, Bansal P, Bridge AJ, Poux S, Bougueleret L, Xenarios I (2016) UniProtKB/Swiss-Prot, the manually annotated section of the UniProt knowledgebase: how to use the entry view. Methods Mol Biol 1374:23–54. https://doi.org/10.1007/978-1-4939-3167-5_2

    Article  PubMed  CAS  Google Scholar 

  16. Kim Y, Bark S, Hook V, Bandeira N (2011) NeuroPedia: neuropeptide database and spectral library. Bioinformatics 27(19):2772–2773. https://doi.org/10.1093/bioinformatics/btr445

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Fu L, Niu B, Zhu Z, Wu S, Li W (2012) CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics 28(23):3150–3152. https://doi.org/10.1093/bioinformatics/bts565

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Tang Q, Nie F, Kang J, Ding H, Zhou P, Huang J (2015) NIEluter: predicting peptides eluted from HLA class I molecules. J Immunol Methods 422:22–27. https://doi.org/10.1016/j.jim.2015.03.021

    Article  PubMed  CAS  Google Scholar 

  19. He B, Kang J, Ru B, Ding H, Zhou P, Huang J (2016) SABinder: a web service for predicting streptavidin-binding peptides. BioMed Res Int 2016:9175143. https://doi.org/10.1155/2016/9175143

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Ding C, Yuan LF, Guo SH, Lin H, Chen W (2012) Identification of mycobacterial membrane proteins and their types using over-represented tripeptide compositions. J Proteomics 77:321–328. https://doi.org/10.1016/j.jprot.2012.09.006

    Article  PubMed  CAS  Google Scholar 

  21. Ding H, Feng PM, Chen W, Lin H (2014) Identification of bacteriophage virion proteins by the ANOVA feature selection and analysis. Mol Biosyst 10(8):2229–2235. https://doi.org/10.1039/c4mb00316k

    Article  PubMed  CAS  Google Scholar 

  22. Ru B, t Hoen PA, Nie F, Lin H, Guo FB, Huang J (2014) PhD7Faster: predicting clones propagating faster from the Ph.D.-7 phage display peptide library. J Bioinform Comput Biol 12(1):1450005. https://doi.org/10.1142/S021972001450005X

    Article  PubMed  CAS  Google Scholar 

  23. Lin H, Ding H (2011) Predicting ion channels and their types by the dipeptide mode of pseudo amino acid composition. J Theor Biol 269(1):64–69. https://doi.org/10.1016/j.jtbi.2010.10.019

    Article  PubMed  CAS  Google Scholar 

  24. Lin H, Deng EZ, Ding H, Chen W, Chou KC (2014) iPro54-PseKNC: a sequence-based predictor for identifying sigma-54 promoters in prokaryote with pseudo k-tuple nucleotide composition. Nucleic Acids Res 42(21):12961–12972. https://doi.org/10.1093/nar/gku1019

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Chen W, Feng PM, Deng EZ, Lin H, Chou KC (2014) iTIS-PseTNC: a sequence-based predictor for identifying translation initiation site in human genes using pseudo trinucleotide composition. Anal Biochem 462:76–83. https://doi.org/10.1016/j.ab.2014.06.022

    Article  PubMed  CAS  Google Scholar 

  26. Ding H, Deng EZ, Yuan LF, Liu L, Lin H, Chen W, Chou KC (2014) iCTX-type: a sequence-based predictor for identifying the types of conotoxins in targeting ion channels. BioMed Res Int 2014:286419. https://doi.org/10.1155/2014/286419

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Chen W, Feng P, Ding H, Lin H, Chou KC (2015) iRNA-Methyl: Identifying N(6)-methyladenosine sites using pseudo nucleotide composition. Anal Biochem 490:26–33. https://doi.org/10.1016/j.ab.2015.08.021

    Article  PubMed  CAS  Google Scholar 

  28. Chen W, Feng PM, Lin H, Chou KC (2014) iSS-PseDNC: identifying splicing sites using pseudo dinucleotide composition. BioMed Res Int 2014:623149. https://doi.org/10.1155/2014/623149

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Zhu PP, Li WC, Zhong ZJ, Deng EZ, Ding H, Chen W, Lin H (2015) Predicting the subcellular localization of mycobacterial proteins by incorporating the optimal tripeptides into the general form of pseudo amino acid composition. Mol Biosyst 11(2):558–563. https://doi.org/10.1039/c4mb00645c

    Article  PubMed  CAS  Google Scholar 

  30. Tang H, Chen W, Lin H (2016) Identification of immunoglobulins using Chou’s pseudo amino acid composition with feature selection technique. Mol Biosyst 12(4):1269–1275. https://doi.org/10.1039/c5mb00883b

    Article  PubMed  CAS  Google Scholar 

  31. Ding H, Lin H, Chen W, Li ZQ, Guo FB, Huang J, Rao N (2014) Prediction of protein structural classes based on feature selection technique. Interdiscip Sci Comput Life Sci 6(3):235–240. https://doi.org/10.1007/s12539-013-0205-6

    Article  CAS  Google Scholar 

  32. Li N, Kang J, Jiang L, He B, Lin H, Huang J (2017) PSBinder: a web service for predicting polystyrene surface-binding peptides. BioMed Res Int 2017:5. https://doi.org/10.1155/2017/5761517

    Article  CAS  Google Scholar 

  33. Chang C-C, Lin C-J (2011) LIBSVM: a library for support vector machines. ACM Trans Intell Syst Technol (TIST) 2(3):27

    Google Scholar 

  34. Ofer D, Linial M (2014) NeuroPID: a predictor for identifying neuropeptide precursors from metazoan proteomes. Bioinformatics 30(7):931–940. https://doi.org/10.1093/bioinformatics/btt725

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the anonymous reviewers for their valuable suggestions and comments, which have led to the improvement of this paper. This work was supported by the National Natural Science Foundation of China [61571095] and the Fundamental Research Funds for the Central Universities of China [ZYGX2015Z006].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Huang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, J., Fang, Y., Yao, P. et al. NeuroPP: A Tool for the Prediction of Neuropeptide Precursors Based on Optimal Sequence Composition. Interdiscip Sci Comput Life Sci 11, 108–114 (2019). https://doi.org/10.1007/s12539-018-0287-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12539-018-0287-2

Keywords

Navigation