Skip to main content
Log in

Sucrose Accumulation in Sugar Beet: From Fodder Beet Selection to Genomic Selection

  • Review Article
  • Published:
Sugar Tech Aims and scope Submit manuscript

Abstract

Sucrose has been known as the main form of energy transport and storage in many economically important plant species. For the past two centuries, sugar beet has been selected as a source of sweetener in human diets for its high sucrose content. Over the past decades, sugar beet breeding has achieved significant goals in the development of taproot yield and sucrose yield. There is still scope for improvement, despite the fact that the sucrose concentration of the taproot today is around 15–20% of the beet’s fresh weight. Sucrose accumulation begins early in the growing season and increases linearly with time in the first half of the development, and saturation is reached in the second half. Desirable hybrids are expected to have small-cell root tissue and a rapid cell division rate as well as bearing the characteristic of high sucrose cultivars. Results of different studies have shown that sugar concentration is influenced greatly by the maternal parent under additive inheritance. The root selection for this trait at early developing programmes may be done by simple selection methods; however, improving above normal limit/percentage demands more complicated/expensive methods. The ease of molecular markers application and also linkage mapping approaches paved the way for sugar beet breeding. Beside sucrose extraction, producing sugar beets with high fructan accumulation, extracting ethanol from its glucose, and biobased materials formation from beet waste assure a promising future for this crop. The present review focuses on the advancements made in understanding sucrose accumulation in the sugar beet root.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akeson, W.R., D.G. Westfall, M.A. Henson, and E.L. Stout. 1979. Influence of nitrogen fertility and topping method on yield, quality and storage losses in sugar beets. Agronomy Journal 71: 292–297.

    CAS  Google Scholar 

  • Artschwager, E. 1926. Anatomy of the vegetative organs of the sugar beet. Journal of Agricultural Research 33: 143–176.

    Google Scholar 

  • Artschwager, E. 1930. A study of the structure of sugar beets in relation to sugar content and type. Journal of Agricultural Research 40: 867–915.

    CAS  Google Scholar 

  • Bellin, D. 2005. Macroarray analysis of gene transcription during sucrose accumulation in sugar beet (Beta vulgaris L.) root: Identification of developmental and metabolism related candidate genes. Ph.D. Thesis, Universität zu Köln, Germany.

  • Berger, S., A.K. Sinha, and T. Roitsch. 2007. Plant physiology meets phytopathology: Plant primary metabolism and plant pathogen interactions. Journal of Experimental Botany 58: 4019–4026.

    CAS  PubMed  Google Scholar 

  • Berghall, S., S. Briggs, S.E. Elsegood, L. Eronen, J.O. Kuusisto, E.J. Philip, T.C. Theobald, and P. Walliander. 1997. The role of sugar beet invertase and related enzymes during growth, storage and processing. Zuckerind 122: 520–530.

    Google Scholar 

  • Biancardi, E., J.M. McGrath, L.W. Panella, R.T. Lewellen, and P. Stevanato. 2010. Sugar beet. In Root and tuber crops, ed. J.E. Bradshaw, 173–219. New York: Springer.

    Google Scholar 

  • Bloch, D., and C. Hoffmann. 2004. Drought stress as affecting yield and quality development of different sugarbeet genotypes. Zuckerindustrie 129 (10): 727–734.

    Google Scholar 

  • Bloch, D., C.M. Hoffmann, and B. Marlander. 2006. Solute accumulation as a cause for quality losses in sugar beet submitted to continuous and temporary drought stress. Journal of Agronomy and Crop Science 192: 17–24.

    CAS  Google Scholar 

  • Bosemark, N.O. 1993. Genetics and breeding. In The sugar beet crop: science into practice, ed. D.A. Cooke, and R.K. Scott, 67–119. London: Chapman & Hall.

    Google Scholar 

  • Bugbee, W.M. 1973. Sucrose and cell walls as factors affecting Phoma storage rot of sugar beet. Phytopathology 63: 480–484.

    CAS  Google Scholar 

  • Bugbee, W.M. 1993. Storage. In The sugar beet crop: Science into practice, ed. D.A. Cooke, and R.K. Scott, 551–570. London: Chapman & Hall.

    Google Scholar 

  • Burba, M. 1976. Atmung und Saccharosestoffwechsel lagernder Zuckerrüben. Zuckerind 26:647–658.

    CAS  Google Scholar 

  • Burba, M., and U. Nitzschke. 1973. Stoffwechselphysiologische Untersuchunger an Zuckerriiben wahrend der Vegetationszeit. Ill. Glucose, fructose, galactose und raffinose. Zucker 26: 356–365.

    CAS  Google Scholar 

  • Burkart, S., R. Manderscheid, and H.J. Weigel. 2009. Canopy CO2 exchange of sugar beet under different CO2 concentrations and nitrogen supply: Results from a free-air CO2 enrichment study. Plant Biology 11: 109–123.

    CAS  PubMed  Google Scholar 

  • Campbell, L.G. 1990. Sugarbeet germplasm selected from the USDA collection. North Dakota Farm Research 47 (6): 32–34.

    Google Scholar 

  • Campbell, L.G. 2002. Sugar beet quality improvement. Journal of Crop Production 5 (1–2): 395–413.

    CAS  Google Scholar 

  • Campbell, L.G., and J.J. Kern. 1982. Genotype × environment interactions in sugarbeet yield trials. Crop Science 22: 932–935.

    Google Scholar 

  • Campbell, L.G., and J.J. Kern. 1983. Relationships among components of yield and quality of sugarbeets. Journal of the American Society of Sugar Beet Technologists 22: 135–145.

    CAS  Google Scholar 

  • Campbell, L., and K. Klotz. 2006. Storage. In Sugar beet, ed. A.P. Draycott, 387–408. Oxford: Blackwell Publishing.

    Google Scholar 

  • Clark, A.E., and R.S. Loomis. 1978. Dynamics of leaf growth and development in sugar beets. Journal of the American Society of Sugar Beet Technologists 20: 97–112.

    Google Scholar 

  • Das Gupta, D.K. 1972. Developmental physiology of sugar beet: III. Effects of decapitation, defoliation, and removing part of the root and shoot on subsequent growth of the sugar beet. Journal of Experimental Botany 23: 93–102.

    Google Scholar 

  • de Bruijn, J.M. 2000. Processing of frost-damaged beets at CSM and the use of dextranase. Zuckerindustrie 125: 898–902.

    Google Scholar 

  • Demmers-Derks, H., R.A.C. Mitchell, V.J. Mitchell, and D.W. Lawlor. 1998. Response of sugar beet (beta vulgaris l.) yield and biochemical composition to elevated CO2 and temperature at two nitrogen applications. Plant, Cell and Environment 21: 829–836.

    CAS  Google Scholar 

  • Doney, D.L. 1979. Seedling physiology and sugarbeet yield. Journal of the American Society of Sugar Beet Technologists 20 (4): 399–418.

    Google Scholar 

  • Doney, D.L. 1983. Sugarbeet root yield sucrose concentration: Physiology and genetics. Sugarbeet Research and Extension Reports 14: 216–219.

    Google Scholar 

  • Doney, D.L. 1984. Sugarbeet root yield and sucrose concentration: physiology and genetics. In 1983 Sugarbeet Res. Extension Rep., Cooperative Extension Service, North Dakota State Univ. 14: 216–217.

  • Doney, D.L. 1993. Broadening the genetic base of sugarbeet. Journal of Sugar Beet Research 30: 209–220.

    Google Scholar 

  • Doney, D.L., and J.C. Theurer. 1976. Hypocotyl diameter as a predictive selection criterion in sugarbeet. Crop Science 16: 513–515.

    Google Scholar 

  • Doney, D.L., R.E. Wyse, and J.C. Theurer. 1981. The relationship between cell size, yield, and sucrose concentration of the sugarbeet root. Canadian Journal of Plant Science 61: 447–453.

    Google Scholar 

  • Draycott, A.P. 2006. Sugar beet. Oxford: Blackwell Publishing.

    Google Scholar 

  • Dunning, R.A., and G.H. Winder. 1972. Some effects especially on yield of artificially defoliated sugarbeet. Annals of Applied Biology 70: 89–98.

    Google Scholar 

  • Dutton, J., and T. Huijbregts. 2006. Root quality and processing. In Sugar beet, ed. A.P. Draycott, 409–442. Oxford: Blackwell Publishing.

    Google Scholar 

  • Edwards, R.H., J.M. Randall, W.M. Camirand, and D.W. Wong. 1989a. Pilot plant scale high pressure steam peeling of sugarbeets. Journal of Sugar Beet Research 26 (2): 40–54.

    Google Scholar 

  • Edwards, R.H., J.M. Randall, and L.W. Rodel. 1989b. Peeling of sugarbeets by use of high pressure steam. Journal of Sugar Beet Research 26 (1): 63–76.

    Google Scholar 

  • Elliott, M.C., and G.D. Weston. 1993. Biology and physiology of the sugar-beet plant. In The sugar beet crop: Science into practice, ed. D.A. Cooke, and R.K. Scott, 37–66. London: Chapman & Hall.

    Google Scholar 

  • FAO. 2016. Sugar, in OECD-FAO Agricultural Outlook 2016–2025, OECD Publishing, Paris. http://dx.doi.org/10.1787/agr_outlook-2016-9-en. Accessed 8 April 2017.

  • Farrar, J.F., and P.E.H. Minchin. 1991. Carbon partitioning in split root systems of barley: Relation to metabolism. Journal of Experimental Botany 42: 1261–1269.

    CAS  Google Scholar 

  • Fasahat, P., K. Muhammad, A. Abdullah, and R. Wickneswari. 2012. Identification of introgressed alien chromosome segments associated with grain quality in Oryza rufipogon × MR219 advanced breeding lines using SSR markers. Genetics and Molecular Research 11 (3): 3534–3546.

    CAS  PubMed  Google Scholar 

  • Fasahat, P., S. Rahman, and W. Ratnam. 2014. Genetic controls on starch amylose content in wheat and rice grains. Journal of Genetics 93 (1): 279–292.

    CAS  PubMed  Google Scholar 

  • Gemma, T. 1971. Morphological studies in the thickening growth of sugarbeet root. Obihiro Zootech University Research Bulletin (Ser. 1) 7 (1): 131–164.

    Google Scholar 

  • Gibbs, A.F., and R.D. Wilcoxson. 1972. Effect of sugar content of Poa pratensis on Helminthosporium leaf spot. Physiol. Plant Pathology 2: 279.

    CAS  Google Scholar 

  • Haddock, J.L. 1953. Sugar beet yield and quality. Agricultural Experiment Station, Utah State Agricultural College Bulletin 362.

  • Harms, K., and B. Schulz. 2015. Method for increasing sucrose yield in agricultural production of sugar beet and sugar cane. U.S. Patent 9,029,635, issued May 12, 2015.

  • Hein, W., H. Bauer, and F. Emerstorfer. 2012. Processing of long-stored sugar beet. Sugar Industry/Zuckerindustrie 137 (1): 25–32.

    CAS  Google Scholar 

  • Heinisch, O., and L. Bohme. 1959. The question of the correlation between the number of rings of vascular bundles and the percentage dry matter content of beets. In: Contributions on beet research. Wiss Abh Deutsch Akad Landwiss, Berlin 38: 7–37.

  • Helmerick, R.H., R.E. Finkner, and C.W. Doxtator. 1963. Variety crosses in sugar beet (Beta vulgaris L.) I. Expression of heterosis and combining ability. Journal of the American Society of Sugar Beet Technologists 12: 573–584.

    Google Scholar 

  • Hemayati, S.S., M.R.J.E. Akbar, A.R. Ghaemi, and P. Fasahat. 2017. Efficiency of white mustard and oilseed radish trap plants against sugar beet cyst nematode. Applied Soil Ecology 119: 192–196.

    Google Scholar 

  • Herbers, K., and U. Sonnewald. 1998. Molecular determinants of sink strength. Current Opinion in Plant Biology 1 (3): 207–216.

    CAS  PubMed  Google Scholar 

  • Hills, F.J., L.M. Burtch, D.M. Holmberg, and A. Ulrich. 1954. Response of yield-type versus sugar-type sugar beet varieties to soil nitrogen levels and time of harvest. Journal of the American Society of Sugar Beet Technologists 8 (1): 64–70.

    Google Scholar 

  • Ho, L.C. 1988. Metabolism and compartmentation of imported sugars in sink organs in relation to sink strength. Annual Review of Plant Physiology and Plant Molecular Biology 39: 355–378.

    CAS  Google Scholar 

  • Hoffmann, C.M. 2010. Root quality of sugarbeet. Sugar Tech 12: 276–287.

    CAS  Google Scholar 

  • Hoffmann, C.M. 2017. Changes in root morphology with yield level of sugar beet. Sugar Industry 142 (7): 420–425.

    Google Scholar 

  • Hoffmann, C.M., T. Huijbregts, N. van Swaaij, and R. Jansen. 2009. Impact of different environments in Europe on yield and quality of sugar beet genotypes. European Journal of Agronomy 30: 17–26.

    CAS  Google Scholar 

  • Hoffmann, C.M., and S. Kluge-Severin. 2011. Growth analysis of autumn and spring sown sugar beet. European Journal of Agronomy 34: 1–9.

    Google Scholar 

  • Hosford, D.J., J.R. Lenton, G.F.J. Milford, T.O. Pocock, and M.C. Elliott. 1984. Phytohormone changes during storage root growth in Beta species. Plant Growth Regulation 2 (4): 371–380.

    CAS  Google Scholar 

  • Huijbregts, A.W.M. 2008. Sugar beet storage-an overview of Dutch research. International Sugar Journal 110 (1318): 618–624.

    CAS  Google Scholar 

  • Jaggard, K.W., A. Qi, and M.J. Armstrong. 2009. A meta-analysis of sugarbeet yield responses to nitrogen fertilizer measured in England since 1980. The Journal of Agricultural Science 147 (3): 287–301.

    CAS  Google Scholar 

  • Jassem, M., E. Sliwinska, and W. Pilarczyk. 2000. Maternal inheritance of sugar concentration. Journal of Sugar Beet Research 37: 41–53.

    Google Scholar 

  • Jonik, C., U. Sonnewald, M.R. Hajirezaei, U.I. Flügge, and F. Ludewig. 2012. Simultaneous boosting of source and sink capacities doubles tuber starch yield of potato plants. Plant Biotechnology Journal 10 (9): 1088–1098.

    CAS  PubMed  Google Scholar 

  • Jung, C. 2004. Genome analysis: Mapping in sugar beet. In Molecular marker systems in plant breeding and crop improvement, ed. H. Lorz, and G. Wenzel, 121–138. Heidelberg: Springer.

    Google Scholar 

  • Jung, B., F. Ludewig, A. Schulz, G. Meißner, N. Wostefeld, U. Flügge, B. Pommerrenig, P. Wirsching, N. Sauer, W. Koch, F. Sommer, T. Mühlhaus, M. Schroda, T. Cuin, D. Graus, I. Marten, R. Hedrich, and H. Neuhaus. 2015. Identification of the transporter responsible for sucrose accumulation in sugar beet taproots. Nature Plants 1: 14001.

    CAS  PubMed  Google Scholar 

  • Kenter, C., and C.M. Hoffmann. 2006. Seasonal patterns of sucrose concentration in relation to other quality parameters of sugar beet (Beta vulgaris L.). Journal of the Science of Food and Agriculture 86: 62–70.

    CAS  Google Scholar 

  • Kenter, C., and C.M. Hoffmann. 2009. Changes in the processing quality of sugar beet (Beta vulgaris L.) during long-term storage under controlled conditions. International Journal of Food Science & Technology 44 (5): 910–917.

    CAS  Google Scholar 

  • Kim, H., S.T. Kim, J. Ryu, B.C. Kang, J.S. Kim, and S.G. Kim. 2017. CRISPR/Cpf1-mediated DNA-free plant genome editing. Nature Communications 8: 14406.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Klotz, K., F. Finger, and M. Anderson. 2006. Wounding increases glycolytic but not soluble sucrolytic activities in stored sugarbeet root. Postharvest Biology and Technology 41: 48–55.

    CAS  Google Scholar 

  • Koster, P.B., P. Raats, and J. Jorritsma. 1980. The effect of some agronomical factors on the respiration rates of sugar beet. In Proceedings of the 43 rd IIRB Congress, Brussels, 109–125.

  • Kursanov, A.L. 1974. Assimilattransport und Zuckerspeicherung in der Zuckerrube. Z. Zuekerindust 24: 478–487.

    CAS  Google Scholar 

  • Lukezic, F.C., J.R. Bloom, and R.B. Carroll. 1969. Development of Fusarium root rot and its effect on root and crown carbohydrate levels of clipped alfalfa plants grown in a gnotobiotic environment. Phytopathology 59: 1575.

    CAS  Google Scholar 

  • MacLachlan, J.B. 1972. Estimation of genetic parameters in a population of monogerm sugar beet (Beta vulgaris). 3. Analysis of a diallel set of crosses among heterozygous populations. Irish Journal of Agricultural Research 11: 327–338.

    Google Scholar 

  • Mahn, K., C. Hoffmann, and B. Marlander. 2002. Distribution of quality components in different morphological sections of sugar beet (Beta vulgaris L.). European Journal of Agronomy 17: 29–39.

    CAS  Google Scholar 

  • Manderscheid, R., A. Pacholski, C. Frnhauf, and H.J. Weigel. 2009. Effects of free air carbon dioxide enrichment and nitrogen supply on growth and yield of winter barley cultivated in a crop rotation. Field Crops Research 110: 185–196.

    Google Scholar 

  • Mathar, S., and P. Vidhyasekaran. 1978. Physiology of resistance to rust in sunflower. Indian Phytopathology 31: 289.

    CAS  Google Scholar 

  • McGrath, J.M., and D. Trebbi. 2007. Genetics of water content in sugarbeet roots. In Proceedings of American society of sugar beet technologists 2007 Biennial Meeting 44:135.

  • Milford, G.F.J. 1973. The growth and development of the storage root of sugar beet. Annals of Applied Biology 75: 427–438.

    Google Scholar 

  • Milford, G.F.J. 1976. Sugar concentration in sugar beet: varietal differences and the effect of soil type and planting density on the size of the root cells. Annals of Applied Biology 83: 251–257.

    Google Scholar 

  • Milford, G.F., and D.J. Watson. 1971. The effect of nitrogen on the growth and sugar content of sugar beet. Annals of Botany 35: 287–300.

    CAS  Google Scholar 

  • Mumford, D.L., and R.E. Wyse. 1976. Effect of fungus infection on respiration and reducing sugar accumulation of sugarbeet roots and the use of fungicides to reduce infection. Journal of the American Society of Sugar Beet Technologists 19: 157–162.

    CAS  Google Scholar 

  • Muthusamy, P., P. Vidhyasekaran, and C.K. Soumini Rajagopalan. 1974. Disease resistance in tomato against damping-off. Indian Phytopathology 27: 182.

    Google Scholar 

  • Neuhaus, H.E. 2007. Transport of primary metabolites across the plant vacuolar membrane. FEBS Letters 581: 2223–2226.

    CAS  PubMed  Google Scholar 

  • Nieberl, P., C. Ehrl, B. Pommerrenig, D. Graus, I. Marten, B. Jung, F. Ludewig, W. Koch, K. Harms, U.I. Flügge, and H.E. Neuhaus. 2017. Functional characterisation and cell specificity of BvSUT1, the transporter that loads sucrose into the phloem of sugar beet (Beta vulgaris L.) source leaves. Plant Biology 19 (3): 315–326.

    CAS  PubMed  Google Scholar 

  • Pack, D.A. 1930. Selection characters as correlated with percent of sucrose, weight, and sucrose content of sugar beet. Journal of Agricultural Science 40: 523–546.

    Google Scholar 

  • Paul, M.J., and C.H. Foyer. 2001. Sink regulation of photosynthesis. Journal of Experimental Botany 52: 1383–1400.

    CAS  PubMed  Google Scholar 

  • Pidgeon, J.D., A.R. Werker, K.W. Jaggard, G.M. Richter, D.H. Lister, and P.D. Jones. 2001. Climatic impact on the productivity of sugar beet in Europe, 1961–1995. Agricultural and Forest Meteorology 109: 27–37.

    Google Scholar 

  • Powers, L. 1957. Identification of genetically-superior individuals and the prediction of genetic gains in sugar beet breeding programs. Journal of the American Society of Sugar Beet Technologists 9: 408–432.

    Google Scholar 

  • Powers, L.R., R.E. Finkner, G.E. Rush, R.R. Wood, and D.F. Peterson. 1959. Genetic improvement of processing quality in sugar beets. Journal of the American Society of Sugar Beet Technologists 10: 578–593.

    Google Scholar 

  • Reif, J.C., W. Liu, M. Gowda, H.P. Maurer, J. Mohring, S. Fischer, A. Schechert, and T. Wurschum. 2010. Genetic basis of agronomically important traits in sugar beet (Beta vulgaris L.) investigated with joint linkage association mapping. Theoretical and Applied Genetics 121 (8): 1489–1499.

    PubMed  Google Scholar 

  • Reinsdorf, E., H.J. Koch, J. Loel, and C.M. Hoffmann. 2014. Yield of bolting winter beet (Beta vulgaris L.) as affected by plant density, genotype and environment. European Journal of Agronomy 54: 1–8.

    Google Scholar 

  • Rinaldi, M., and A.V. Vonella. 2006. The response of autumn- and spring-sown sugar beet (Beta vulgaris L.) to irrigation in Southern Italy: Water and radiation use efficiency. Field Crops Research 95: 103–114.

    Google Scholar 

  • Roitsch, T. 1999. Source-sink regulation by sugar and stress. Current Opinion in Plant Biology 2: 198–206.

    CAS  PubMed  Google Scholar 

  • Rolph, G.M. 1917. Something about sugar: Its history, growth, manufacture and distribution. San Fransisco, CA: John J Newbegin.

    Google Scholar 

  • Rosenkranz, H., R. Vogel, S. Greiner, and T. Rausch. 2001. In wounded sugar beet (Beta vulgaris L.) tap-root, hexose accumulation correlates with the induction of a vacuolar invertase isoform. Journal of Experimental Botany 52 (365): 2381–2385.

    CAS  PubMed  Google Scholar 

  • Saunders, J.W., J.M. McGrath, J.M. Halloin, and J.C. Theurer. 2000. Registration of SR95 sugarbeet germplasm with smooth root. Crop Science 40: 1205–1206.

    Google Scholar 

  • Savitsky, V.F. 1940. Genetics of the sugar beets. All-Union Scientific Research Institute of the Sugar Industry. Sugar Beet Culture 1: 549–684.

    Google Scholar 

  • Schiweck, H., and L. Busching. 1974. Das Verhalten von glucose und fructose während der Zuckerfabrikation. Zucker 27: 122–128.

    CAS  Google Scholar 

  • Schlosser, L.A. 1949. Ober plasmatische Vererbung auf polyploiden Stufen. Planta 37: 533–564.

    Google Scholar 

  • Schneider, K., D.C. Borchardt, R. Schäfer-Pregl, N. Nagl, C. Glass, A. Jeppsson, C. Gebhardt, and F. Salamini. 1999. PCR-based cloning and segregation analysis of functional gene homologues in Beta vulgaris. Molecular Genetics and Genomics 262: 515–524.

    CAS  Google Scholar 

  • Schneider, K., I.L. Schafer-Pregl, D.C. Borchardt, and F. Salamini. 2002. Mapping QTLs for sucrose content, yield and quality in a sugar beet population fingerprinted by EST-related markers. Theoretical and Applied Genetics 104: 1107–1113.

    CAS  PubMed  Google Scholar 

  • Schnepel, K., and C.M. Hoffmann. 2015. Effect of extending the growing period on yield formation of sugar beet. Journal of Agronomy and Crop Science 202: 530–541.

    Google Scholar 

  • Schnepel, K., and C.M. Hoffmann. 2016. Genotypic differences in storage losses of sugar beet—Causes and indirect criteria for selection. Plant Breeding 135: 130–137.

    CAS  Google Scholar 

  • Scott, R.K., and P.C. Longden. 1970. Pollen release by diploid and tetraploid sugar beet plants. Annals of Applied Biology 66: 129–135.

    Google Scholar 

  • Shimamoto, Y., and S. Hosokawa. 1969. Genetic variability of certain characters at various growth stages in sugar beet. Japanese Journal of Breeding 19: 100–105.

    Google Scholar 

  • Shimamoto, Y., and S. Hosokawa. 1967. Statistical genetical analysis of root growth in sugarbeet. I. Changes in genetical parameters with growth. Bulletin of Sugar Beet Research 9: 118–122.

    Google Scholar 

  • Smith, G.A., R.J. Hecker, G.W. Maag, and D.M. Rasmuson. 1973. Combining ability and gene action estimates in an eight-parent diallel cross of sugarbeet. Crop Science 13: 312–316.

    Google Scholar 

  • Stich, B., A. Melchinger, M. Heckenberger, J. Möhring, A. Schechert, and H.P. Piepho. 2008a. Association mapping in multiple segregating populations of sugar beet (Beta vulgaris L.). Theoretical and Applied Genetics 117: 1167–1179.

    PubMed  Google Scholar 

  • Stich, B., H.P. Piepho, B. Schulz, and A. Melchinger. 2008b. Multi-trait association mapping in sugar beet (Beta vulgaris L.). Theoretical and Applied Genetics 117: 947–954.

    PubMed  Google Scholar 

  • Stout, M. 1954. Some factors that affect the respiration rate of sugarbeets. Journal of the American Society of Sugar Beet Technologists 8: 404–409.

    CAS  Google Scholar 

  • Strausbaugh, C.A., and A.M. Gillen. 2009. Sugar beet root rot at harvest in the U.S. Intermountain West. Canadian Journal of Plant Pathology 31: 232–240.

    Google Scholar 

  • Swarbrick, P., P. Schulze-Lefert, and J. Scholes. 2006. Metabolic consequences of susceptibility and resistance (race-specific and broad-spectrum) in barley leaves challenged with powdery mildew. Plant, Cell and Environment 29: 1061–1076.

    CAS  PubMed  Google Scholar 

  • Tabil, L.G., J. Kienholz, H. Qi, and M.V. Eliason. 2003. Airflow resistance of sugar beet. Journal of Sugar Beet Research 40 (3): 67–86.

    Google Scholar 

  • Takebe, M., and Y. lzumiyama. 1977. The relationship between the sugar content and root weight of the sugar beet. Proceedings of the Sugar Beet Research Association 19: 251–258.

    Google Scholar 

  • Theurer, J.C. 1979. Growth patterns in sugarbeet production. Journal of the American Society of Sugar Beet Technologists 20 (4): 343–367.

    CAS  Google Scholar 

  • Theurer, J.C. 1993. Pre-breeding to change sugarbeet root architecture. Journal of Sugar Beet Research 30 (4): 221–239.

    Google Scholar 

  • Trebbi, D., and J.M. McGrath. 2003. Sucrose accumulation during early sugar beet development. In Proceedings of the American Society of Beet Sugar Technologists. Joint Meeting of the International Institute for Beet Research and the American Society of Beet Sugar Technologists, San Antonio TX 26: 267–271.

  • Trebbi, D., and J.M. McGrath. 2004. Fluorometric sucrose evaluation for sugar beet. Journal of Agricultural and Food Chemistry 52 (23): 6862–6867.

    CAS  PubMed  Google Scholar 

  • Trebbi, D., and J.M. McGrath. 2009. Functional differentiation of the sugar beet root system as indicator of developmental phase change. Physiologia Plantarum 135 (1): 84–97.

    CAS  PubMed  Google Scholar 

  • Vaughn, M.W., G.N. Harrington, and D.R. Bush. 2002. Sucrose-mediated transcriptional regulation of sucrose transporter activity in the phloem. Proceedings of the National Academy of Sciences of the United States of America 99: 10876–10880.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vidhyasekaran, P. 1974. Finger millet helminthosporiose, a low sugar disease. Journal of Plant Diseases and Protection 81: 28–38.

    CAS  Google Scholar 

  • Wardlaw, I.F. 1990. The control partitioning in plants. New Phytologist 116: 341–381.

    CAS  Google Scholar 

  • Warren-Wilson, J. 1972. Control of crop processes. In Crop processes in controlled environments, ed. A.R. Rees, K.E. Cockshull, D.W. Hand, and R.G. Hurd, 7–30. London: Academic.

    Google Scholar 

  • Weber, W.E., D.C. Borchardt, and G. Koch. 1999. Combined linkage maps and QTLs in sugar beet (Beta vulgaris L.) from different populations. Plant Breeding 118 (3): 193–204.

    CAS  Google Scholar 

  • Weber, W.E., D.C. Borchardt, and G. Koch. 2000. Marker analysis for quantitative traits in sugar beet. Plant Breeding 119: 97–106.

    CAS  Google Scholar 

  • White, J.S. 2014. Sucrose, HFCS, and fructose: history, manufacture, composition, applications, and production. In Fructose, high fructose corn syrup, sucrose and health, ed. Rippe J.M, 13–33. Springer, New York.

  • Winter, H., D.G. Robinson, and H.W. Heldt. 1993. Subcellular volumes and metabolite concentrations in barley leaves. Planta 191: 180–190.

    CAS  Google Scholar 

  • Woo, J.W., J. Kim, S.I. Kwon, C. Corvalán, S.W. Cho, H. Kim, S.G. Kim, S.T. Kim, S. Choe, and J.S. Kim. 2015. DNA-free genome editing in plants with preassembled CRISPR-Cas9 ribonucleoproteins. Nature Biotechnology 33 (11): 1162.

    CAS  PubMed  Google Scholar 

  • Wu, G.Q., R.J. Feng, and Q.Z. Shui. 2016. Effect of osmotic stress on growth and osmolytes accumulation in sugar beet (Beta vulgaris L.) plants. Plant, Soil and Environment 62 (4): 189–194.

    CAS  Google Scholar 

  • Wurschum, T., H. Maurer, T. Kraft, G. Janssen, C. Nilsson, and J. Reif. 2011a. Genome-wide association mapping of agronomic traits in sugar beet. Theoretical and Applied Genetics 123: 1121–1131.

    PubMed  Google Scholar 

  • Wurschum, T., H.P. Maurer, B. Schulz, J. Mohring, and J.C. Reif. 2011b. Genome-wide association mapping reveals epistasis and genetic interaction networks in sugar beet. Theoretical and Applied Genetics 123: 109–118.

    PubMed  Google Scholar 

  • Wyse, R.E. 1970. Factors influencing the respiration rate of sugar beet roots. In IIRB Winter Congress Session II (2.9), 1–9.

  • Wyse, R.E. 1979a. Parameters controlling sugar content and yield of sugar beet. Journal of the American Society of Sugar Beet Technologists 20: 268–385.

    Google Scholar 

  • Wyse, R.E. 1979b. Sucrose uptake by sugar beet tap root tissue. Plant Physiology 64: 837–841.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wyse, R.E., E. Zamski, and A.D. Tomos. 1986. Turgor regulation of sucrose transport in sugar beet taproot tissue. Plant Physiology 81 (2): 478–481.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wyse, R.E., and D.R. Dilley. 1973. Evaluation of wax coatings for improving sugarbeet storage. Crop Science 13: 567–570.

    Google Scholar 

  • Zhang, Y.F., G.L. Li, X.F. Wang, Y.Q. Sun, and S.Y. Zhang. 2017. Transcriptomic profiling of taproot growth and sucrose accumulation in sugar beet (Beta vulgaris L.) at different developmental stages. PLoS ONE 12 (4): e0175454.

    PubMed  PubMed Central  Google Scholar 

  • Zhao, B., I.J. Mackay, P.D.S. Caligari, and R. Mead. 1997. The efficiency of between and within full-sib family selection in a recurrent selection programme in sugar beet (Beta vulgaris L). Euphytica 95: 355–359.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

PF and MA conceived the idea of the review and drafted the initial manuscript; LJ, SSH, and PT scrutinized and corrected the manuscript to its submission-ready version. All authors read and approved the final version of the manuscript prior to submission.

Corresponding author

Correspondence to Parviz Fasahat.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fasahat, P., Aghaeezadeh, M., Jabbari, L. et al. Sucrose Accumulation in Sugar Beet: From Fodder Beet Selection to Genomic Selection. Sugar Tech 20, 635–644 (2018). https://doi.org/10.1007/s12355-018-0617-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12355-018-0617-z

Keywords

Navigation