Skip to main content
Log in

Adipocytes Promote B16BL6 Melanoma Cell Invasion and the Epithelial-to-Mesenchymal Transition

  • Original Paper
  • Published:
Cancer Microenvironment

Abstract

Metastatic melanoma is one of the most deadly and evasive types of cancer. On average, cancer patients with metastatic melanoma survive only 6–9 months after diagnosis. Epidemiological and animal studies suggest that obesity increases the metastatic ability of malignant melanoma, though the mechanism is not known. In the present studies, we assessed the ability of 3T3L1 adipocytes to modulate B16BL6 melanoma cell invasion and the Epithelial-to-Mesenchymal Transition (EMT). For this purpose, we induced the differentiation of 3T3L1 fibroblasts to adipocytes. Then, we collected the cell culture media from both fibroblasts and adipocytes and determined their effect on the invasive ability and EMT gene expression of B16BL6 melanoma cells. Results show that adipocyte media increased that ability of B16BL6 cells to invade. The higher invasive ability of B16BL6 melanoma cells was associated with increased expression of EMT genes such as Snai1, MMP9, Twist, and Vimentin. Additionally, the expression of the cell-to-cell adhesion protein E-cadherin and the metastasis suppressor gene Kiss1 were down-regulated in these B16BL6 cells. Also, adipocytes had high levels of the pro-inflammatory cytokine Interleukin 6 (IL-6). Treatment of B16BL6 cells with IL-6 elicited similar effects as the adipocyte media; IL-6 promoted the invasive ability of B16BL6 melanoma cells, increased the expression of Snai1, and decreased Kiss1 expression. IL-6 neutralization, however, did not have a visible effect on adipocyte media-induced invasion and snai1 staining. In summary, adipocytes may increase the invasive ability of B16BL6 melanoma cells by promoting EMT and decreasing the expression of genes such as E-cadherin and Kiss1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. American Cancer Society. Cancer Facts and Figures (2009) Atlanta, Georgia 2009

  2. Klimek VM, Wolchok JD, Chapman PB et al (2000) Systemic chemotherapy. Clin Plast Surg 27(3):451–61, ix–x

    PubMed  CAS  Google Scholar 

  3. Samanic C, Chow W, Gridley G et al (2006) Relation of body mass index to cancer risk in 362,552 Swedish men. Canc Causes Contr 17(7):901–9

    Article  Google Scholar 

  4. Mori A, Sakurai H, Choo M et al (2006) Severe pulmonary metastasis in obese and diabetic mice. Int J Canc 119(12):2760–7

    Article  CAS  Google Scholar 

  5. Centers for Disease Control and prevention. Overweight and Obesity. 2009

  6. Balistreri CR, Caruso C, Candore G (2010) The role of adipose tissue and adipokines in obesity-related inflammatory diseases. Mediat Inflamm 2010:802078

    Article  Google Scholar 

  7. Percik R, Stumvoll M (2009) Obesity and cancer. Exp Clin Endocrinol Diabetes 117(10):563–6

    Article  PubMed  CAS  Google Scholar 

  8. Dennis L, Lowe J, Lynch C et al (2008) Cutaneous melanoma and obesity in the Agricultural Health Study. Ann Epidemiol 18(3):214–21

    Article  PubMed  Google Scholar 

  9. Mantovani A (2010) Molecular pathways linking inflammation and cancer. Curr Mol Med 10(4):369–73

    Article  PubMed  CAS  Google Scholar 

  10. Xing F, Saidou J, Watabe K (2010) Cancer associated fibroblasts (CAFs) in tumor microenvironment. Front Biosci 15:166–79

    Article  PubMed  CAS  Google Scholar 

  11. Stout RD, Watkins SK, Suttles J (2009) Functional plasticity of macrophages: in situ reprogramming of tumor-associated macrophages. J Leukoc Biol 86(5):1105–9

    Article  PubMed  CAS  Google Scholar 

  12. Siveen KS, Kuttan G (2009) Role of macrophages in tumour progression. Immunol Lett 123(2):97–102

    Article  PubMed  CAS  Google Scholar 

  13. Guise T (2010) Examining the metastatic niche: targeting the microenvironment. Semin Oncol 37(Suppl 2):S2–14

    Article  PubMed  CAS  Google Scholar 

  14. Coghlin C, Murray GI (2010) Current and emerging concepts in tumour metastasis. J Pathol 222(1):1–15

    Article  PubMed  CAS  Google Scholar 

  15. Chaffer CL, Weinberg RA (2011) A perspective on cancer cell metastasis. Science 331(6024):1559–64

    Article  PubMed  CAS  Google Scholar 

  16. Bonnomet A, Brysse A, Tachsidis A et al (2010) Epithelial-to-mesenchymal transitions and circulating tumor cells. J Mammary Gland Biol Neoplasia 15(2):261–73

    Article  PubMed  Google Scholar 

  17. Peinado H, Olmeda D, Cano A (2007) Snail, Zeb and bHLH factors in tumour progression: an alliance against the epithelial phenotype? Nat Rev Canc 7(6):415–28

    Article  CAS  Google Scholar 

  18. Kang Y, Massagué J (2004) Epithelial-mesenchymal transitions: twist in development and metastasis. Cell 118(3):277–9

    Article  PubMed  CAS  Google Scholar 

  19. Yang J, Mani SA, Donaher JL et al (2004) Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis. Cell 117(7):927–39

    Article  PubMed  CAS  Google Scholar 

  20. Przybylo JA, Radisky DC (2007) Matrix metalloproteinase-induced epithelial-mesenchymal transition: tumor progression at Snail’s pace. Int J Biochem Cell Biol 39(6):1082–8

    Article  PubMed  CAS  Google Scholar 

  21. Dissanayake SK, Wade M, Johnson CE et al (2007) The Wnt5A/protein kinase C pathway mediates motility in melanoma cells via the inhibition of metastasis suppressors and initiation of an epithelial to mesenchymal transition. J Biol Chem 282(23):17259–71

    Article  PubMed  CAS  Google Scholar 

  22. Steeg P (2003) Metastasis suppressors alter the signal transduction of cancer cells. Nat Rev Canc 3(1):55–63

    Article  CAS  Google Scholar 

  23. Stafford L, Vaidya K, Welch D (2008) Metastasis suppressors genes in cancer. Int J Biochem Cell Biol 40(5):874–91

    Article  PubMed  CAS  Google Scholar 

  24. Thiery J, Acloque H, Huang R et al (2009) Epithelial-mesenchymal transitions in development and disease. Cell 139(5):871–90

    Article  PubMed  CAS  Google Scholar 

  25. Sadowski HB, Wheeler TT, Young DA (1992) Gene expression during 3T3-L1 adipocyte differentiation. Characterization of initial responses to the inducing agents and changes during commitment to differentiation. J Biol Chem 267(7):4722–31

    PubMed  CAS  Google Scholar 

  26. Wu Z, Xie Y, Morrison RF et al (1998) PPARgamma induces the insulin-dependent glucose transporter GLUT4 in the absence of C/EBPalpha during the conversion of 3T3 fibroblasts into adipocytes. J Clin Invest 101(1):22–32

    Article  PubMed  CAS  Google Scholar 

  27. Ansieau S, Morel AP, Hinkal G et al (2010) TWISTing an embryonic transcription factor into an oncoprotein. Oncogene 29(22):3173–84

    Article  PubMed  CAS  Google Scholar 

  28. Sullivan N, Sasser A, Axel A et al (2009) Interleukin-6 induces an epithelial-mesenchymal transition phenotype in human breast cancer cells. Oncogene 28(33):2940–7

    Article  PubMed  CAS  Google Scholar 

  29. Wu Y, Deng J, Rychahou P et al (2009) Stabilization of snail by NF-kappaB is required for inflammation-induced cell migration and invasion. Canc Cell 15(5):416–28

    Article  CAS  Google Scholar 

  30. Kuphal S, Palm HG, Poser I et al (2005) Snail-regulated genes in malignant melanoma. Melanoma Res 15(4):305–13

    Article  PubMed  CAS  Google Scholar 

  31. Alonso SR, Tracey L, Ortiz P et al (2007) A high-throughput study in melanoma identifies epithelial-mesenchymal transition as a major determinant of metastasis. Canc Res 67(7):3450–60

    Article  CAS  Google Scholar 

  32. Tse JC, Kalluri R (2007) Mechanisms of metastasis: epithelial-to-mesenchymal transition and contribution of tumor microenvironment. J Cell Biochem 101(4):816–29

    Article  PubMed  CAS  Google Scholar 

  33. Pećina-Slaus N (2003) Tumor suppressor gene E-cadherin and its role in normal and malignant cells. Canc Cell Int 3(1):17

    Article  Google Scholar 

  34. Vesuna F, van Diest P, Chen JH et al (2008) Twist is a transcriptional repressor of E-cadherin gene expression in breast cancer. Biochem Biophys Res Commun 367(2):235–41

    Article  PubMed  CAS  Google Scholar 

  35. Jordà M, Olmeda D, Vinyals A et al (2005) Upregulation of MMP-9 in MDCK epithelial cell line in response to expression of the Snail transcription factor. J Cell Sci 118(Pt 15):3371–85

    Article  PubMed  Google Scholar 

  36. Kessenbrock K, Plaks V, Werb Z (2010) Matrix metalloproteinases: regulators of the tumor microenvironment. Cell 141(1):52–67

    Article  PubMed  CAS  Google Scholar 

  37. Lee J, Miele M, Hicks D et al (1996) KiSS-1, a novel human malignant melanoma metastasis-suppressor gene. J Natl Cancer Inst 88(23):1731–7

    Article  PubMed  CAS  Google Scholar 

  38. Yan C, Wang H, Boyd D (2001) KiSS-1 represses 92-kDa type IV collagenase expression by down-regulating NF-kappa B binding to the promoter as a consequence of Ikappa Balpha -induced block of p65/p50 nuclear translocation. J Biol Chem 276(2):1164–72

    Article  PubMed  CAS  Google Scholar 

  39. Taylor MA, Parvani JG, Schiemann WP (2010) The pathophysiology of epithelial-mesenchymal transition induced by transforming growth factor-beta in normal and malignant mammary epithelial cells. J Mammary Gland Biol Neoplasia 15(2):169–90

    Article  PubMed  Google Scholar 

  40. Miyazono K (2009) Transforming growth factor-beta signaling in epithelial-mesenchymal transition and progression of cancer. Proc Jpn Acad Ser B Phys Biol Sci 85(8):314–23

    Article  PubMed  CAS  Google Scholar 

  41. Xu J, Lamouille S, Derynck R (2009) TGF-beta-induced epithelial to mesenchymal transition. Cell Res 19(2):156–72

    Article  PubMed  CAS  Google Scholar 

  42. Bortell R, Owen TA, Ignotz R et al (1994) TGF beta 1 prevents the down-regulation of type I procollagen, fibronectin, and TGF beta 1 gene expression associated with 3T3-L1 pre-adipocyte differentiation. J Cell Biochem 54(2):256–63

    Article  PubMed  CAS  Google Scholar 

  43. Samad F, Yamamoto K, Pandey M et al (1997) Elevated expression of transforming growth factor-beta in adipose tissue from obese mice. Mol Med 3(1):37–48

    PubMed  CAS  Google Scholar 

  44. Samad F, Uysal KT, Wiesbrock SM et al (1999) Tumor necrosis factor alpha is a key component in the obesity-linked elevation of plasminogen activator inhibitor 1. Proc Natl Acad Sci USA 96(12):6902–7

    Article  PubMed  CAS  Google Scholar 

  45. Fu H, Hu Z, Wen J et al (2009) TGF-beta promotes invasion and metastasis of gastric cancer cells by increasing fascin1 expression via ERK and JNK signal pathways. Acta Biochim Biophys Sin (Shanghai) 41(8):648–56

    Article  CAS  Google Scholar 

  46. Yao Z, Fenoglio S, Gao DC et al (2010) TGF-beta IL-6 axis mediates selective and adaptive mechanisms of resistance to molecular targeted therapy in lung cancer. Proc Natl Acad Sci USA 107(35):15535–40

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by the American Cancer Society grant ACS RSG CNE-113703 and by grants from the National Institutes of Health: National Cancer Institute grant NCI 1K22CA127519-01A1 and National Institute of Environmental Health Sciences Center grants ES09145 and ES007784.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nomelí P. Núñez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kushiro, K., Chu, R.A., Verma, A. et al. Adipocytes Promote B16BL6 Melanoma Cell Invasion and the Epithelial-to-Mesenchymal Transition. Cancer Microenvironment 5, 73–82 (2012). https://doi.org/10.1007/s12307-011-0087-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12307-011-0087-2

Keywords

Navigation