Skip to main content

Advertisement

Log in

Possible Role of microRNA-122 in Modulating Multidrug Resistance of Hepatocellular Carcinoma

  • Original Article
  • Published:
Indian Journal of Clinical Biochemistry Aims and scope Submit manuscript

Abstract

Hepatocellular carcinoma (HCC) is a hypervascular primary liver cancer characterized by rapid progression, besides, resistance to traditional chemotherapeutic agents. It has been shown that microRNAs play critical roles in regulation of tumor cell sensitivity to drugs through modulating the expression of genes involved in drug transport. The present study investigated whether restoration of miR-122 in HCC cells could alter the cell cycle distribution and the expression of multidrug resistance (MDR)-related genes (ABCB1, ABCC1, ABCG2 and ABCF2). After overexpression of miR-122 in HepG2 cells treated or untreated with doxorubicin doses, total RNAs and protein extracts were isolated for application of QRT-PCR and western blotting techniques. Moreover, cell cycle distribution was monitored by flow cytometry. Our results revealed that, the over expression of miR-122 in HepG2 cells treated or untreated with doxorubicin could modulate the sensitivity of cells to chemotherapeutic drug through downregulation of MDR-related genes, ABCB1 and ABCF2. Interpretation of cell cycle distribution revealed that, the anti-proliferative effect of miR-122 is associated with the accumulation of cells in G0/G1 phase. Moreover, treatment with miR-122 and doxorubicin resulted in high percentage of HCC cells in G0/G1 phase. Taken together, our findings revealed that, overexpression of miR-122 inhibited HCC cell growth by inducing cell cycle arrest and this arrest is associated with down-regulation of MDR-related genes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ferlay J, Shin HR, Bray F, Forman D, Mathers C, Parkin DM. Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer. 2010;127:2893–917.

    Article  CAS  PubMed  Google Scholar 

  2. Wong CM, Ng IO. Molecular pathogenesis of hepatocellular carcinoma. Liver Int. 2008;28:160–74.

    Article  CAS  PubMed  Google Scholar 

  3. Lyra-González I, Flores-Fong LE, González- García I, Medina-Preciado D, Armendariz-Borunda J. Adenoviral gene therapy in hepatocellular carcinoma: a review. Hepatol Int. 2013;7:48–58.

    Article  PubMed  Google Scholar 

  4. Forner A, Llovet JM, Bruix J. Hepatocellular carcinoma. Lancet. 2012;379:1245–55.

    Article  PubMed  Google Scholar 

  5. Cabibbo G, Maida M, Genco C, Antonucci M, Cammà C. Causes of and prevention strategies for hepatocellular carcinoma. Semin Oncol. 2012;39:374–83.

    Article  PubMed  Google Scholar 

  6. Sanyal AJ, Yoon SK, Lencioni R. The etiology of hepatocellular carcinoma and consequences for treatment. Oncologist. 2010;15(Suppl 4):14–22.

    Article  PubMed  Google Scholar 

  7. Sell S, Leffert HL. Liver cancer stem cells. J Clin Oncol. 2008;26:2800–5.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Sara D, Federica M, Francesca B, Teresa B, Claudio P, Paola M, et al. MicroRNAs: short non-coding players in cancer chemoresistance. Mol Cell Ther. 2014;2:16.

    Article  Google Scholar 

  9. Gottesman MM. Mechanisms of cancer drug resistance. Annu Rev Med. 2002;53:615–27.

    Article  CAS  PubMed  Google Scholar 

  10. Gottesman MM, Ling V. The molecular basis of multidrug resistance in cancer: the early years of P-glycoprotein research. FEBS Lett. 2006;580:998–1009.

    Article  CAS  PubMed  Google Scholar 

  11. Dean M, Rzhetsky A, Allikmets R. The human ATP-binding cassette (ABC) transporter superfamily. Genome Res. 2001;11:1156–66.

    Article  CAS  PubMed  Google Scholar 

  12. Litman T, Druley TE, Stein WD, Bates SE. From MDR to MXR: new understanding of multidrug resistance systems, their properties and clinical significance. Cell Mol Life Sci. 2001;58:931–59.

    Article  CAS  PubMed  Google Scholar 

  13. Weinstein R, Jakate S, Dominguez J, Lebovitz M, Koukoulis G, Kuszak J, et al. Relationship of the expression of the multidrug resistance gene product (P-glycoprotein) in human colon carcinoma to local tumor aggressiveness and lymph node metastasis. Cancer Res. 1991;51:2720–6.

    CAS  PubMed  Google Scholar 

  14. Vander Borght S, Komuta M, Libbrecht L, Katoonizadeh A, Aerts R, Dymarkowski S, et al. Expression of multidrug resistance-associated protein 1 in hepatocellular carcinoma is associated with a more aggressive tumour phenotype and may reflect a progenitor cell origin. Liver Int. 2008;28:1370–80.

    Article  CAS  PubMed  Google Scholar 

  15. Natarajan K, Xie Y, Baer M, Ross D. Role of breast cancer resistance protein (BCRP/ABCG2) in cancer drug resistance. Biochem Pharmacol. 2012;83:1084–103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Vasiliou V, Vasiliou K, Nebert D. Human ATP-binding cassette (ABC) transporter family. Hum Genomics. 2009;3:281–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Nishimura S, Tsuda H, Ito K. Differential expression of ABCF2 protein among different histologic types of epithelial ovarian cancer and in clear cell adenocarcinomas of different organs. Hum Pathol. 2007;38:134–9.

    Article  CAS  PubMed  Google Scholar 

  18. Lukyanova N, Rusetskya N, Tregubova N, Chekhun V. Molecular profile and cell cycle in mcf-7 cells resistant to cisplatin and doxorubicin. Exp Oncol. 2009;31:87–91.

    CAS  PubMed  Google Scholar 

  19. Calcagno AM, Salcido CD, Gillet JP, Wu CP, Fostel JM. Prolonged drug selection of breast cancer cells and enrichment of cancer stem cell characteristics. J Natl Cancer Inst. 2010;102:1637–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kuo MT. Redox regulation of multidrug resistance in cancer chemotherapy: molecular mechanisms and therapeutic opportunities. Antioxid Redox Signal. 2009;11:99–133.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Shinoda C, Maruyama M, Fujishita T, Dohkan J, Oda H. Doxorubicin induces expression of multidrug resistance-associated protein 1 in human small cell lung cancer cell lines by the c-jun N-terminal kinase pathway. Int J Cancer. 2005;117:21–31.

    Article  CAS  PubMed  Google Scholar 

  22. Carthew RW, Sontheimer EJ. Origins and mechanisms of miRNAs and siRNAs. Cell. 2009;136:642–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Friedman RC, Farh KK, Burge CB, Bartel DP. Most mammalian mRNAs are conserved targets of microRNAs. Genome Res. 2009;19:92–105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Morita K, Taketomi A, Shirabe K, Umeda K, Kayashima H, Ninomiya M, et al. Clinical significance and potential of hepatic microRNA-122 expression in hepatitis C. Liver Int. 2011;31:474–84.

    Article  CAS  PubMed  Google Scholar 

  25. Chang J, Nicolas E, Marks D, Sander C, Lerro A, Buendia MA, et al. miR-122, a mammalian liver-specific microRNA, is processed from HCR mRNA and may downregulate the high affinity cationic amino acid transporter CAT-1. RNA Biol. 2004;1:106–13.

    Article  CAS  PubMed  Google Scholar 

  26. Hou J, Lin L, Zhou W, Wang Z, Ding G, Dong Q, et al. Identification of miRNomes in human liver and hepatocellular carcinoma reveals miR-199a/b-3p as therapeutic target for hepatocellular carcinoma. Cancer Cell. 2011;19:232–43.

    Article  CAS  PubMed  Google Scholar 

  27. Coulouarn C, Factor VM, Andersen JB, Durkin ME, Thorgeirsson SS. Loss of miR-122 expression in liver cancer correlates with suppression of the hepatic phenotype and gain of metastatic properties. Oncogene. 2009;28:3526–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Szabo G, Bala S. MicroRNAs in liver disease. Nat Rev Gastroenterol Hepatol. 2013;10:542–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72:248–54.

    Article  CAS  PubMed  Google Scholar 

  30. Yahya S, Hamed A, Emara M, Soltan M, Abd Ellatef G, Abdelnasser S. Differential effects of c-myc and ABCB1 silencing on reversing drug resistance in HepG2/Dox cells. Tumor Biol. 2016;37(5):5925–32.

    Article  CAS  Google Scholar 

  31. Guan J, Chen XP, Zhu H, Luo SF, Cao B, Ding L. Involvement of extracellular signal-regulated kinase/mitogen-activated protein kinase pathway in multidrug resistance induced by HBx in hepatoma cell line. World J Gastroenterol. 2004;10:3522–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ng KK, Vauthey JN, Pawlik TM, Lauwers GY, Regimbeau JM, Belghiti J. Is hepatic resection for large or multinodular hepatocellular carcinoma justified? Results from a multi-institutional database. Ann Surg Oncol. 2005;12:364–73.

    Article  PubMed  Google Scholar 

  33. Hoffmann K, Xiao Z, Franz C, Mohr E, Serba S, Buchler MW, et al. Involvement of the epidermal growth factor receptor in the modulation of multidrug resistance in human hepatocellular carcinoma cells in vitro. Cancer Cell Int. 2011;11:40–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hoffmann K, Xiao Z, Franz C, Mohr E, Serba S, Buchler MW, et al. Sorafenib modulates the gene expression of multi-drug resistance mediating ATP-binding cassette proteins in experimental hepatocellular carcinoma. Anticancer Res. 2010;30:4503–8.

    CAS  PubMed  Google Scholar 

  35. Xu Y, Xia F, Ma L, Shan J, Shen J, Yang Z, et al. MicroRNA-122 sensitizes HCC cancer cells to adriamycin and vincristine through modulating expression of MDR and inducing cell cycle arrest. Cancer Lett. 2011;310:160–9.

    CAS  PubMed  Google Scholar 

  36. Shang-Hsun T, Tzer-Ming C, Hui-Ting H, Yen-Hui C. A critical dose of doxorubicin is required to alter the gene expression profiles in MCF-7 cells acquiring multidrug resistance. PLOS ONE. 2015;10:1–24.

    Google Scholar 

  37. Veronika T. Expression and regulation of the ABC transporters in tumour cells. Diploma thesis. Praha: Univerzita Karlova v Praze; 2015.

  38. Feifei X, Fengliang W, Ting Y, Yuan S, Ting Z, Yun C. Differential drug resistance acquisition to doxorubicin and paclitaxel in breast cancer cells. Cancer Cell Int. 2014;14:142–55.

    Google Scholar 

  39. Kenneth KT. MicroRNA: a prognostic biomarker and a possible druggable target for circumventing multidrug resistance in cancer chemotherapy. J Biomed Sci. 2013;20:99–118.

    Article  Google Scholar 

  40. Bao L, Hazari S, Mehra S, Kaushal D, Moroz K, Dash S. Increased expression of P-glycoprotein and doxorubicin chemoresistance of metastatic breast cancer is regulated by miR-298. Am J Pathol. 2012;180:2490–503.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Deeley RG, Westlake C, Cole SP. Transmembrane transport of endo- and xenobiotics by mammalian ATP-binding cassette multidrug resistance proteins. Physiol Rev. 2006;86:849–99.

    Article  CAS  PubMed  Google Scholar 

  42. Mao Q, Deeley RG, Cole SP. Functional reconstitution of substrate transport by purified multidrug resistance protein MRP1 (ABCC1) in phospholipid vesicles. J Biol Chem. 2000;275:34166–72.

    Article  CAS  PubMed  Google Scholar 

  43. Bark H, Xu H, Kim S, Yun J, Choi C. P-glycoprotein down-regulates expression of breast cancer resistance protein in a drug-free state. FEBS Lett. 2008;582:2595–600.

    Article  CAS  PubMed  Google Scholar 

  44. Cisternino S, Mercier C, Bourasset F, Roux F, Scherrmann JM. Expression, up-regulation and transport activity of the multidrug-resistance protein ABCG2 at the mouse blood-brain barrier. Cancer Res. 2004;64:3296–301.

    Article  CAS  PubMed  Google Scholar 

  45. Vos TA, Hooiveld GJ, Koning H, Childs S, Meijer DK, Moshage H, et al. Up-regulation of the multidrug resistance genes, Mrp1 and Mdr1b, and down-regulation of the organic anion transporter, Mrp2, and the bile salt transporter, Spgp, in endotoxemic rat liver. Hepatology. 1998;28:1637–44.

    Article  CAS  PubMed  Google Scholar 

  46. Galimberti S, Guerrini F, Palumbo GA, Consoli U, Fazzi R, Morabito F, et al. Evaluation of BCRP and MDR-1 co-expression by quantitative molecular assessment in AML patients. Leuk Res. 2004;28:367–72.

    Article  CAS  PubMed  Google Scholar 

  47. KanZaki A, Toi M, Nakayama K, Bando H, Mutoh M, Uchida T, et al. Expression of multidrug resistance-related transporters in human breast carcinoma. Jpn J Cancer Res. 2001;92:452–8.

    Article  CAS  PubMed  Google Scholar 

  48. Fornari F, Gramantieri L, Giovannini C, Veronese A, Ferracin M, Sabbioni S, et al. MiR- 122/cyclin G1 interaction modulates p53 activity and affects doxorubicin sensitivity of human hepatocarcinoma cells. Cancer Res. 2009;69:5761–7.

    Article  CAS  PubMed  Google Scholar 

  49. Xu H, He J, Xiao Z, Zhang Q, Chen Y, Zhou H, et al. Liver-enriched transcription factors regulate microRNA-122 that targets CUTL1 during liver development. Hepatology. 2010;52:1431–42.

    Article  CAS  PubMed  Google Scholar 

  50. Bai S, Nasser M, Wang B, Hsu S, Datta J, Kutay H, et al. MicroRNA-122 inhibits tumorigenic properties of hepatocellular carcinoma cells and sensitizes these cells to sorafenib. J Biol Chem. 2009;284:32015–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kimura SH, Ikawa M, Ito A. Cyclin G1 is involved in G2/M arrest in response to DNA damage and in growth control after damage recovery. Oncogene. 2001;20:3290–300.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaymaa M. M. Yahya.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yahya, S.M.M., Fathy, S.A., El-Khayat, Z.A. et al. Possible Role of microRNA-122 in Modulating Multidrug Resistance of Hepatocellular Carcinoma. Ind J Clin Biochem 33, 21–30 (2018). https://doi.org/10.1007/s12291-017-0651-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12291-017-0651-8

Keywords

Navigation