Skip to main content
Log in

Numerical simulation of metal forming processes with 3D adaptive Remeshing strategy based on a posteriori error estimation

  • Original Research
  • Published:
International Journal of Material Forming Aims and scope Submit manuscript

Abstract

In this work, a fully automated adaptive remeshing strategy, based on a tetrahedral element for 3D metal forming processes, was proposed in order to solve problems associated with the severe mesh distortion that occurs during the computation. The main idea is to use the h-type adaptive mesh in combination with an a-posteriori error estimator measured (by the energy norm) on each finite elements to locally control the mesh modification-as-needed. Once a new mesh is generated, all history-dependent variables must be carefully transferred between subsequent meshes. Therefore, several transfer techniques are described and compared. A special attention is given to restore the local mechanical equilibrium of the system with a new methodology. After presenting the necessary adaptive remeshing steps, some 3D analytic and numerical results using the proposed adaptive strategy are given to demonstrate the capabilities of the proposed equilibrated approach and to illustrate some practical characteristics of our remeshing process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Diez P, Calderon G (2007) Remeshing criteria and proper error representations for goal oriented h-adaptivity. Comput Methods Appl Mech Engrg 196(4-6):719–733

    Article  MathSciNet  MATH  Google Scholar 

  2. Ainsworth M, Oden JT (1997) A posteriori error estimation in finite element analysis. Comput Methods Appl Mech Engrg 142(1-2):1–88

    Article  MathSciNet  MATH  Google Scholar 

  3. Verfurth R (1999) A review of a posteriori error estimation techniques for elasticity problems. Comput Methods Appl Mech Engrg 176(1-4):419–440

    Article  MathSciNet  MATH  Google Scholar 

  4. Lo SH (1991) Volume discretization into tetrahedra-1. Verification and orientation of boundary surfaces. Comput Struct 39(5):493–500

    Article  MATH  Google Scholar 

  5. Lo SH (1991) Volume discretization into tetrahedra-II. 3D triangulation by advancing front approach. Comput Struct 39(5):501–511

    Article  MATH  Google Scholar 

  6. Dureisseix D, Bavestrello H (2006) Information transfer between incompatible finite element meshes: application to coupled thermo-viscoelasticity. Comput Methods Appl Mech Engrg 85:6523–6541

    Article  MATH  Google Scholar 

  7. Zeramdini B, Robert C, Germain G, Pottier T (2016) Simulation of metal forming processes with a 3D adaptive remeshing procedure. AIP Conf Proceed. https://doi.org/10.1063/1.4963636

  8. Srikanth A, Zabaras N (2000) Shape optimization and preform design in metal forming processes. Comput Methods Appl Mech Engrg 190(13–14):1859–1901

    Article  MATH  Google Scholar 

  9. Kumar S, Fourment L, Guerdoux S (2015) Parallel, second-order and consistent remeshing transfer operators for evolving meshes with superconvergence property on surface and volume. Finite Elem Anal Des 93:70–84

    Article  MathSciNet  Google Scholar 

  10. Peric D, Hochard C, Dutko M, Owen DRJ (1996) Transfer operators for evolving meshes in small strain elasto-placticity. Comput Methods Appl Mech Engrg 137(3-4):331–344

    Article  MATH  Google Scholar 

  11. Zienkiewicz OC, Zhu JZ (1992) The superconvergent patch recovery (SPR) and adaptive finite element. Comput Methods Appl Mech Engrg 101(1-3):207–224

    Article  MathSciNet  MATH  Google Scholar 

  12. Zienkiewicz OC, Zhu JZ (1992) The superconvergent patch recovery and a posteriori error estimation. Part I: the recovery technique. Internat J Numer Methods Engrg 33(7):1331–1364

    Article  MathSciNet  MATH  Google Scholar 

  13. Zienkiewicz OC, Zhu JZ (1992) The superconvergent patch recovery and a posteriori error estimation. Part II: error estimates and adaptivity. Internat J Numer Methods Engrg 33(7):1365–1382

    Article  MathSciNet  MATH  Google Scholar 

  14. Babuška I, Rheinbildt WC (1978) A posteriori error estimates for the finite element method. Internat J Numer Methods Engrg 12(10):1597–1615

    Article  MATH  Google Scholar 

  15. Ladevèze P, Coffignal G, Pelle J.P (1986) Accuracy of elastoplastic and dynamic analysis. In Babuška I, Zienkiewicz O.C, Gago J and Oliveira E.R de A, ch.11 Accuracy Estimates and Adaptive Refinements in Finite Element Computations, John Wiley & Sons Ltd pp 181–203

  16. Zienkiewicz OC, Zhu JZ (1987) A simple error estimator and adaptive procedure for practical engineering analysis. Int J Numer Methods Eng 24(2):337–357

    Article  MathSciNet  MATH  Google Scholar 

  17. Ladevèze P, Pelle J.P (2004) Mastering calculation in linear and nonlinear mechanics, Berlin

  18. Boussetta R, Fourment L (2004) A posteriori error estimation and three-dimensional adaptive remeshing: application to error control of non-steady metal forming simulations. AIP Conf Proc 712:2246–2251

    Article  Google Scholar 

  19. Boussetta R, Coupez T, Fourment L (2006) Adaptive remeshing based on a posteriori error estimation for forging simulation. Comput Methods Appl Mech Engrg 195(48-49):6626–6645

    Article  MathSciNet  MATH  Google Scholar 

  20. Coorevits P, Bellenger E (2004) Alternative mesh optimality criteria for h-adaptive finite element method. Finite Elem Anal Des 40:2195–1215

    Article  MATH  Google Scholar 

  21. Ciarlet P.G (1978) The finite element method for elliptic problems. North-Holland publishing company, Amsterdam, New York, 45, 4

    Google Scholar 

  22. Khoei AR, Gharehbaghi SA, Tabarraie AR, Riahi A (2007) Error estimation, adaptivity and data transfer in enriched plasticity continua to analysis of shear band localization. Appl Math Model 31(6):983–1000

    Article  MATH  Google Scholar 

  23. Babuška I, Strouboulis T, Upadhyay CS, Gangaraj SK, Copps K (1994) Validation of a posteriori error estimators by numerical approach. Int J Numer Methods Engrg 37(7):1073–1123

    Article  MathSciNet  MATH  Google Scholar 

  24. Wiberg NE, Abdulwahab F, Ziukas S (1994) Enhanced superconvergent patch recovery incorporating equilibrium and boundary conditions. Inter J for Numer Methods Engrg 37(20):3417–3440

    Article  MathSciNet  MATH  Google Scholar 

  25. Liszka T, Orkisz J (1980) The finite differences method at arbitrary irregular grids and its application in applied machanics. Comput Struct 11(1-2):83–95

    Article  MATH  Google Scholar 

  26. Liszka T (1984) An interpolation method for an irregular net of nodes. Int J Numer Methods Engrg 20(9):1599–1612

    Article  MATH  Google Scholar 

  27. Johnson G.R, Cook W.K (1983) A constitutive model and data for metals subjected to large strains high strain rates and high temperatures. 7th international symposium on Balistics pp 541–547

  28. Ayed Y, Germain G, Ammar A, Furet B (2016) Thermo-mechanical characterization of the Ti17 titanium alloy under extreme loading conditions. Int J Adv Manuf Technol 90:5–8. https://doi.org/10.1007/s00170-016-9476-5

    Google Scholar 

  29. Hu Y, Randolph MF (1998) H-adaptive FE analysis of elasto-plastic non-homogeneous soil with large deformation. Comput Geotech 23(1-2):61–83

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bessam Zeramdini.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

• Adaptive mesh strategy is developed for 3D metal material processes.

• Different methods recovery techniques are compared.

• Equilibrium method for dynamic explicit scheme is proposed.

• Results are compared with experiments test.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeramdini, B., Robert, C., Germain, G. et al. Numerical simulation of metal forming processes with 3D adaptive Remeshing strategy based on a posteriori error estimation. Int J Mater Form 12, 411–428 (2019). https://doi.org/10.1007/s12289-018-1425-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12289-018-1425-4

Keywords

Navigation