Skip to main content
Log in

Evaluation and application of constitutive promoters for cutinase production by Saccharomyces cerevisiae

  • Microbial Genetics, Genomics and Molecular Biology
  • Published:
Journal of Microbiology Aims and scope Submit manuscript

Abstract

Cutinase as a promising biocatalyst has been intensively studied and applied in processes targeted for industrial scale. In this work, the cutinase gene tfu from Thermobifida fusca was artificially synthesized according to codon usage bias of Saccharomyces cerevisiae and investigated in Saccharomyces cerevisiae. Using the α-factor signal peptide, the T. fusca cutinase was successfully overexpressed and secreted with the GAL1 expression system. To increase the cutinase level and overcome some of the drawbacks of induction, four different strong promoters (ADH1, HXT1, TEF1, and TDH3) were comparatively evaluated for cutinase production. By comparison, promoter TEF1 exhibited an outstanding property and significantly increased the expression level. By fed-batch fermentation with a constant feeding approach, the activity of cutinase was increased to 29.7 U/ml. The result will contribute to apply constitutive promoter TEF1 as a tool for targeted cutinase production in S. cerevisiae cell factory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Araujo, R., Silva, C., O'Neill, A., Micaelo, N., Guebitz, G., Soares, C.M., Casal, M., and Cavaco-Paulo, A. 2007. Tailoring cutinase activity towards polyethylene terephthalate and polyamide 6,6 fibers. J. Biotechnol. 128, 849–857.

    Article  CAS  PubMed  Google Scholar 

  • Bitter, G.A. and Egan, K.M. 1984. Expression of heterologous genes in Saccharomyces cerevisiae from vectors utilizing the glyceraldehyde-3-phosphate dehydrogenase gene promoter. Gene 32, 263–274.

    Article  CAS  PubMed  Google Scholar 

  • Blazeck, J., Garg, R., Reed, B., and Alper, H.S. 2012. Controlling promoter strength and regulation in Saccharomyces cerevisiae using synthetic hybrid promoters. Biotechnol. Bioeng. 109, 2884–2895.

    Article  CAS  PubMed  Google Scholar 

  • Calado, C.R., Almeida, C., Cabral, J.M., and Fonseca, L.P. 2003. Development of a fed-batch cultivation strategy for the enhanced production and secretion of cutinase by a recombinant Saccharomyces cerevisiae SU50 strain. J. Biosci. Bioeng. 96, 141–148.

    Article  CAS  PubMed  Google Scholar 

  • Calado, C.R., Ferreira, B.S., Da Fonseca, M.M., Cabral, J.M., and Fonseca, L.P. 2004. Integration of the production and the purification processes of cutinase secreted by a recombinant Saccharomyces cerevisiae SU50 strain. J. Biotechnol. 109, 147–158.

    Article  CAS  PubMed  Google Scholar 

  • Calado, C.R., Mannesse, M., Egmond, M., Cabral, J.M., and Fonseca, L.P. 2002. Production of wild-type and peptide fusion cutinases by recombinant Saccharomyces cerevisiae MM01 strains. Biotechnol. Bioeng. 78, 692–698.

    Article  CAS  PubMed  Google Scholar 

  • Carvalho, C.M., Aires-Barros, M.R., and Cabral, J.M. 1999. Cutinase: from molecular level to bioprocess development. Biotechnol. Bioeng. 66, 17–34.

    Article  CAS  PubMed  Google Scholar 

  • Chen, S., Tong, X., Woodard, R.W., Du, G., Wu, J., and Chen, J. 2008. Identification and characterization of bacterial cutinase. J. Biol. Chem. 283, 25854–25862.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Da Silva, N.A. and Srikrishnan, S. 2012. Introduction and expression of genes for metabolic engineering applications in Saccharomyces cerevisiae. FEMS Yeast Res. 12, 197–214.

    Article  PubMed  Google Scholar 

  • Demain, A.L. and Vaishnav, P. 2009. Production of recombinant proteins by microbes and higher organisms. Biotechnol. Adv. 27, 297–306.

    Article  CAS  PubMed  Google Scholar 

  • Denis, C.L., Ferguson, J., and Young, E.T. 1983. mRNA levels for the fermentative alcohol dehydrogenase of Saccharomyces cerevisiae decrease upon growth on a nonfermentable carbon source. J. Biol. Chem. 258, 1165–1171.

    CAS  PubMed  Google Scholar 

  • Diderich, J.A., Schepper, M., Van Hoek, P., Luttik, M.A., Van Dijken, J.P., Pronk, J.T., Klaassen, P., Boelens, H.F., De Mattos, M.J., Van Dam, K., et al. 1999. Glucose uptake kinetics and transcription of HXT genes in chemostat cultures of Saccharomyces cerevisiae. J. Biol. Chem. 274, 15350–15359.

    Article  CAS  PubMed  Google Scholar 

  • Du, G.C., Zhang, S.L., Hua, Z.Z., Zhu, Y., and Chen, J. 2007. Enhanced cutinase production with Thermobifida fusca by twostage pH control strategy. Biotechnol. J. 2, 365–369.

    Article  CAS  PubMed  Google Scholar 

  • Egmond, M.R. and De Vlieg, J. 2000. Fusarium solani pisi cutinase. Biochimie 82, 1015–1021.

    Article  CAS  PubMed  Google Scholar 

  • Gatignol, A., Dassain, M., and Tiraby, G. 1990. Cloning of Saccharomyces cerevisiae promoters using a probe vector based on phleomycin resistance. Gene 91, 35–41.

    Article  CAS  PubMed  Google Scholar 

  • Gustafsson, C., Govindarajan, S., and Minshull, J. 2004. Codon bias and heterologous protein expression. Trends Biotechnol. 22, 346–353.

    Article  CAS  PubMed  Google Scholar 

  • Hamilton, R., Watanabe, C.K., and de Boer, H. 1987. Compilation and comparison of the sequence context around the AUG startcodons in Saccharomyces cerevisiae mRNAs. Nucleic Acids Res. 15, 3581–3593.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hauf, J., Zimmermann, F.K., and Muller, S. 2000. Simultaneous genomic overexpression of seven glycolytic enzymes in the yeast Saccharomyces cerevisiae. Enzyme Microb. Technol. 26, 688–698.

    Article  CAS  PubMed  Google Scholar 

  • Hou, J., Tyo, K.E., Liu, Z., Petranovic, D., and Nielsen, J. 2012. Metabolic engineering of recombinant protein secretion by Saccharomyces cerevisiae. FEMS Yeast Res. 12, 491–510.

    Article  CAS  PubMed  Google Scholar 

  • Hwang, B.Y. 2012. Directed evolution of cutinase using in vitro compartmentalization. Biotechnol. Bioprocess Eng. 17, 500–505.

    Article  CAS  Google Scholar 

  • Kim, M.D., Lee, T.H., Lim, H.K., and Seo, J.H. 2004. Production of antithrombotic hirudin in GAL1-disrupted Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 65, 259–262.

    CAS  PubMed  Google Scholar 

  • Kwon, M.A., Kim, H.S., Yang, T.H., Song, B.K., and Song, J.K. 2009. High-level expression and characterization of Fusarium solani cutinase in Pichia pastoris. Protein Expr. Purif. 68, 104–109.

    Article  CAS  PubMed  Google Scholar 

  • Ozcan, S. and Johnston, M. 1995. Three different regulatory mechanisms enable yeast hexose transporter (HXT) genes to be induced by different levels of glucose. J. Mol. Cell Biol. 15, 1564–1572.

    Article  CAS  Google Scholar 

  • Park, S.T., Min, K., Choi, Y.S., and Yoo, Y.J. 2012. Screening of stable cutinase from Fusarium solani pisi using plasmid display system. Biotechnol. Bioprocess Eng. 17, 506–511.

    Article  CAS  Google Scholar 

  • Partow, S., Siewers, V., Bjorn, S., Nielsen, J., and Maury, J. 2010. Characterization of different promoters for designing a new expression vector in Saccharomyces cerevisiae. Yeast 27, 955–964.

    Article  CAS  PubMed  Google Scholar 

  • Rohde, J.R., Trinh, J., and Sadowski, I. 2000. Multiple signals regulate GAL transcription in yeast. J. Mol. Cell Biol. 20, 3880–3886.

    Article  CAS  Google Scholar 

  • Ruohonen, L., Aalto, M.K., and Keranen, S. 1995. Modifications to the ADH1 promoter of Saccharomyces cerevisiae for efficient production of heterologous proteins. J. Biotechnol. 39, 193–203.

    Article  CAS  PubMed  Google Scholar 

  • Shang, F., Wen, S., Wang, X., and Tan, T. 2006. High-cell-density fermentation for ergosterol production by Saccharomyces cerevisiae. J. Biosci. Bioeng. 101, 38–41.

    Article  CAS  PubMed  Google Scholar 

  • Stagoj, M.N., Comino, A., and Komel, R. 2006. A novel GAL recombinant yeast strain for enhanced protein production. Biomol. Eng. 23, 195–199.

    Article  CAS  PubMed  Google Scholar 

  • Sun, J., Shao, Z., Zhao, H., Nair, N., Wen, F., Xu, J.H., and Zhao, H. 2012. Cloning and characterization of a panel of constitutive promoters for applications in pathway engineering in Saccharomyces cerevisiae. Biotechnol. Bioeng. 109, 2082–2092.

    Article  CAS  PubMed  Google Scholar 

  • Van Den Brink, J., Akeroyd, M., Van Der Hoeven, R., Pronk, J.T., De Winde, J.H., and Daran-Lapujade, P. 2009. Energetic limits to metabolic flexibility: responses of Saccharomyces cerevisiae to glucose-galactose transitions. Microbiology 155, 1340–1350.

    Article  PubMed  Google Scholar 

  • Van Gemeren, I.A., Musters, W., Van Den Hondel, C.A., and Verrips, C.T. 1995. Construction and heterologous expression of a synthetic copy of the cutinase cDNA from Fusarium solani pisi. J. Biotechnol. 40, 155–162.

    Article  PubMed  Google Scholar 

  • Verripsab, T., Duboc, P., Visser, C., and Sagt, C. 2000. From gene to product in yeast: production of fungal cutinase. Enzyme Microb. Technol. 26, 812–818.

    Article  CAS  PubMed  Google Scholar 

  • Yan, H.J., Hua, Z.Z., Qian, G.S., Wang, M., Du, G.C., and Chen, J. 2009. Effect of cutinase on the degradation of cotton seed coat in bio-scouring. Biotechnol. Bioprocess Eng. 14, 354–360.

    Article  CAS  Google Scholar 

  • Yang, S., Du, G., Chen, J., and Kang, Z. 2017. Characterization and application of endogenous phase-dependent promoters in Bacillus subtilis. Appl. Microbiol. Biotechnol. 101, 1–11.

    Article  CAS  Google Scholar 

  • Zhang, Y., Chen, S., He, M., Wu, J., Chen, J., and Wang, Q. 2011. Effects of Thermobifida fusca cutinase-carbohydrate: binding module fusion proteins on cotton bioscouring. Biotechnol. Bioprocess Eng. 16, 645–653.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Juan Zhang or Zhen Kang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Cai, Y., Du, G. et al. Evaluation and application of constitutive promoters for cutinase production by Saccharomyces cerevisiae . J Microbiol. 55, 538–544 (2017). https://doi.org/10.1007/s12275-017-6514-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-017-6514-4

Keywords

Navigation