Skip to main content
Log in

High-density single antibody electrochemical nanoarrays

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The fabrication and electrochemical interrogation of very high density single-antibody nanoarrays is reported. Gold nanodots, 15 nm in diameter, arranged in large (cm2) square arrays with a pitch of 200 nm, are used as carriers for primary antibodies (immunoglobulin G (IgG)), further recognized by secondary redox-labeled detection antibodies. Ensemble scale interrogation of the antibody array by cyclic voltammetry, and nanoscale interrogation of individual nanodots by mediator tethered atomic force-scanning electrochemical microscopy (Mt/AFM-SECM), enable the occupancy of nanodots by single antibody molecules to be demonstrated. Experiments involving the competitive adsorption of antibodies of different species onto the nanodots evidence the possibility of using single-antibody nanoarrays for digital electrochemical immunoassays.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chen, Z. Q.; Dodig-Crnković, T.; Schwenk, J. M.; Tao, S. C. Current applications of antibody microarrays. Clin. Proteomics 2018, 15, 7.

    Google Scholar 

  2. Wingren, C.; Borrebaeck, C. A. K. Progress in miniaturization of protein arrays—A step closer to high-density nanoarrays. Drug Discov. Today 2007, 12, 813–819.

    CAS  Google Scholar 

  3. Borrebaeck, C. A. K.; Wingren, C. Design of high-density antibody microarrays for disease proteomics: Key technological issues. J. Proteomics 2009, 72, 928–935.

    CAS  Google Scholar 

  4. Ghatnekar-Nilsson, S.; Dexlin, L.; Wingren, C.; Montelius, L.; Borrebaeck, C. A. K. Design of atto-vial based recombinant antibody arrays combined with a planar wave-guide detection system. Proteomics 2007, 7, 540–547.

    CAS  Google Scholar 

  5. Petersson, L.; Coen, M.; Amro, N. A.; Truedsson, L.; Borrebaeck, C. A. K.; Wingren, C. Miniaturization of multiplexed planar recombinant antibody arrays for serum protein profiling. Bioanalysis 2014, 6, 1175–1185.

    CAS  Google Scholar 

  6. Lee, K. B.; Park, S. J.; Mirkin, C. A.; Smith, J. C.; Mrksich, M. Protein nanoarrays generated by dip-pen nanolithography. Science 2002, 295, 1702–1705.

    CAS  Google Scholar 

  7. Nam, J. M.; Han, S. W.; Lee, K. B.; Liu, X. G.; Ratner, M. A.; Mirkin, C. A. Bioactive protein nanoarrays on nickel oxide surfaces formed by dip-pen nanolithography. Angew. Chem., Int. Ed. 2004, 43, 1246–1249.

    CAS  Google Scholar 

  8. Lynch, M.; Mosher, C.; Huff, J.; Nettikadan, S.; Johnson, J.; Henderson, E. Functional protein nanoarrays for biomarker profiling. Proteomics 2004, 4, 1695–1702.

    CAS  Google Scholar 

  9. Bruckbauer, A.; Zhou, D. J.; Kang, D. J.; Korchev, Y. E.; Abell, C.; Klenerman, D. An addressable antibody nanoarray produced on a nanostructured surface. J. Am. Chem. Soc. 2004, 126, 6508–6509.

    CAS  Google Scholar 

  10. Zhou, G.; Bergeron, S.; Ricoult, S.; Juncker, D. Digitizing immunoassay on an antibody nanoarray to improve assay sensitivity. In 2013 Transducers & Eurosensors XXVII: 17th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS & EUROSENSORS XXVII), Barcelona, Spain, 2013, pp 2783–2786.

  11. Hoff, J. D.; Cheng, L. J.; Meyhöfer, E.; Guo, L. J.; Hunt, A. J. Nanoscale protein patterning by imprint lithography. Nano Lett. 2004, 4, 853–857.

    CAS  Google Scholar 

  12. Palma, M.; Abramson, J. J.; Gorodetsky, A. A.; Penzo, E.; Gonzalez, R. L.; Sheetz, M. P.; Nuckolls, C.; Hone, J.; Wind, S. J. Selective biomolecular nanoarrays for parallel single-molecule investigations. J. Am. Chem. Soc. 2011, 133, 7656–7659.

    CAS  Google Scholar 

  13. Cai, H. G.; Wolfenson, H.; Depoil, D.; Dustin, M. L.; Sheetz, M. P.; Wind, S. J. Molecular occupancy of nanodot arrays. ACS Nano 2016, 10, 4173–1183.

    CAS  Google Scholar 

  14. Wiesbauer, M.; Wollhofen, R.; Vasic, B.; Schilcher, K.; Jacak, J.; Klar, T. A. Nano-anchors with single protein capacity produced with STED lithography. Nano Lett. 2013, 13, 5672–5678.

    CAS  Google Scholar 

  15. Schlapak, R.; Danzberger, J.; Haselgrübler, T.; Hinterdorfer, P.; Schäffler, F.; Howorka, S. Painting with biomolecules at the nanoscale: Biofunctionalization with tunable surface densities. Nano Lett. 2012, 12, 1983–1989.

    CAS  Google Scholar 

  16. Chai, J. N.; Wong, L. S.; Giam, L.; Mirkin, C. A. Single-molecule protein arrays enabled by scanning probe block copolymer lithography. Proc. Natl. Acad. Sci. USA 2011, 108, 19521–19525.

    CAS  Google Scholar 

  17. Tran, H.; Killops, K. L.; Campos, L. M. Advancements and challenges of patterning biomolecules with sub-50 nm features. Soft Matter 2013, 9, 6578–6586.

    CAS  Google Scholar 

  18. Shen, L.; Garland, A.; Wang, Y. N.; Li, Z. C.; Bielawski, C. W.; Guo, A.; Zhu, X. Y. Two dimensional nanoarrays of individual protein molecules. Small 2012, 8, 3169–3174.

    CAS  Google Scholar 

  19. Macpherson, J. V.; Unwin, P. R. Combined scanning electrochemical-atomic force microscopy. Anal. Chem. 2000, 72, 276–285.

    CAS  Google Scholar 

  20. Kueng, A.; Kranz, C.; Lugstein, A.; Bertagnolli, E.; Mizaikoff, B. Integrated AFM-SECM in tapping mode: Simultaneous topographical and electrochemical imaging of enzyme activity. Angew. Chem., Int. Ed. 2003, 42, 3238–3240.

    CAS  Google Scholar 

  21. Anne, A.; Cambril, E.; Chovin, A.; Demaille, C. Touching surface-attached molecules with a microelectrode: Mapping the distribution of redox-labeled macromolecules by electrochemical-atomic force microscopy. Anal. Chem. 2010, 82, 6353–6362.

    CAS  Google Scholar 

  22. Anne, A.; Chovin, A.; Demaille, C.; Lafouresse, M. High-resolution mapping of redox-immunomarked proteins using electrochemical-atomic force microscopy in molecule touching mode. Anal. Chem. 2011, 83, 7924–7932.

    CAS  Google Scholar 

  23. Shiku, H.; Matsue, T.; Uchida, I. Detection of microspotted carcinoembryonic antigen on a glass substrate by scanning electrochemical microscopy. Anal. Chem. 1996, 68, 1276–1278.

    CAS  Google Scholar 

  24. Horrocks, B. R.; Wittstock, G. In Scanning Electrochem. Microsc, 2nd ed.; Bard, A. J.; Mirkin, M. V., Eds.; CRC Press: Boca Raton, 2012; pp 317–378.

    Google Scholar 

  25. Conzuelo, F.; Schulte, A.; Schuhmann, W. Biological imaging with scanning electrochemical microscopy. Proc. Math. Phys. Eng. Sci. 2018, 474, 1–24.

    Google Scholar 

  26. Bentley, C. L.; Edmondson, J.; Meloni, G. N.; Perry, D.; Shkirskiy, V.; Unwin, P. R. Nanoscale electrochemical mapping. Anal. Chem. 2019, 91, 84–108.

    CAS  Google Scholar 

  27. Mirkin, M. V.; Sun, T.; Yu, Y.; Zhou, M. Electrochemistry at one nanoparticle. Acc. Chem. Res. 2016, 49, 2328–2335.

    CAS  Google Scholar 

  28. Kausaite-Minkstimiene, A.; Ramanaviciene, A.; Kirlyte, J.; Ramanavicius, A. Comparative study of random and oriented antibody immobilization techniques on the binding capacity of immunosensor. Anal. Chem. 2010, 82, 6401–6408.

    CAS  Google Scholar 

  29. Tajima, N.; Takai, M.; Ishihara, K. Significance of antibody orientation unraveled: Well-oriented antibodies recorded high binding affinity. Anal. Chem. 2011, 83, 1969–1976.

    CAS  Google Scholar 

  30. Welch, N. G.; Scoble, J. A.; Muir, B. W.; Pigram, P. J. Orientation and characterization of immobilized antibodies for improved immunoassays (Review). Biointerphases 2017, 12, 02D301.

    Google Scholar 

  31. Gao, S. P.; Guisán, J. M.; Rocha-Martin, J. Oriented immobilization of antibodies onto sensing platforms—A critical review. Anal. Chim. Acta 2022, 1189, 338907.

    CAS  Google Scholar 

  32. Anne, A.; Demaille, C.; Moiroux, J. Elastic bounded diffusion. Dynamics of ferrocene-labeled poly(ethylene glycol) chains terminally attached to the outermost monolayer of successively self-assembled monolayers of immunoglobulins. J. Am. Chem. Soc. 1999, 121, 10379–10388.

    CAS  Google Scholar 

  33. Pease, L. F.; Elliott, J. T.; Tsai, D. H.; Zachariah, M. R.; Tarlov, M. J. Determination of protein aggregation with differential mobility analysis: Application to IgG antibody. Biotechnol. Bioeng. 2008, 101, 1214–1222.

    CAS  Google Scholar 

  34. Agheli, H.; Malmström, J.; Larsson, E. M.; Textor, M.; Sutherland, D. S. Large area protein nanopatterning for biological applications. Nano Lett. 2006, 6, 1165–1171.

    CAS  Google Scholar 

  35. Chennit, K.; Trasobares, J.; Anne, A.; Cambril, E.; Chovin, A.; Clément, N.; Demaille, C. Electrochemical imaging of dense molecular nanoarrays. Anal. Chem. 2017, 89, 11061–11069.

    CAS  Google Scholar 

  36. Laviron, E. General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems. J. Electroanal. Chem. Interfacial Electrochem. 1979, 101, 19–28.

    CAS  Google Scholar 

  37. Anne, A.; Demaille, C.; Moiroux, J. Elastic bounded diffusion and electron propagation: Dynamics of the wiring of a self-assembly of immunoglobulins bearing terminally attached ferrocene poly(ethylene glycol) chains according to a spatially controlled organization. J. Am. Chem. Soc. 2001, 123, 4817–4825.

    CAS  Google Scholar 

  38. Clément, N.; Patriarche, G.; Smaali, K.; Vaurette, F.; Nishiguchi, K.; Troadec, D.; Fujiwara, A.; Vuillaume, D. Large array of sub-10-nm single-grain au nanodots for use in nanotechnology. Small 2011, 7, 2607–2613.

    Google Scholar 

  39. Cohen, L.; Walt, D. R. Single-molecule arrays for protein and nucleic acid analysis. Annu. Rev. Anal. Chem. 2017, 10, 345–363.

    CAS  Google Scholar 

  40. Cohen, L.; Walt, D. R. Highly sensitive and multiplexed protein measurements. Chem. Rev. 2019, 119, 293–321.

    CAS  Google Scholar 

  41. Anne, A.; Moiroux, J. Quantitative characterization of the flexibility of poly(ethylene glycol) chains attached to a glassy carbon electrode. Macromolecules 1999, 32, 5829–5835.

    CAS  Google Scholar 

  42. Paiva, T. O.; Torbensen, K.; Patel, A. N.; Anne, A.; Chovin, A.; Demaille, C.; Bataille, L.; Michon, T. Probing the enzymatic activity of individual biocatalytic fd-viral particles by electrochemical-atomic force microscopy. ACS Catal. 2020, 10, 7843–7856.

    CAS  Google Scholar 

  43. Trasobares, J.; Vaurette, F.; François, M.; Romijn, H.; Codron, J. L.; Vuillaume, D.; Théron, D.; Clément, N. High speed e-beam lithography for gold nanoarray fabrication and use in nanotechnology. Beilstein J. Nanotechnol. 2014, 5, 1918–1925.

    Google Scholar 

  44. Smaali, K.; Clément, N.; Patriarche, G.; Vuillaume, D. Conductance statistics from a large array of sub-10 nm molecular junctions. ACS Nano 2012, 6, 4639–4647.

    CAS  Google Scholar 

  45. Smaali, K.; Desbief, S.; Foti, G.; Frederiksen, T.; Sanchez-Portal, D.; Arnau, A.; Nys, J. P.; Leclère, P.; Vuillaume, D.; Clément, N. On the mechanical and electronic properties of thiolated gold nanocrystals. Nanoscale 2015, 7, 1809–1819.

    CAS  Google Scholar 

  46. Trasobares, J.; Rech, J.; Jonckheere, T.; Martin, T.; Aleveque, O.; Levillain, E.; Diez-Cabanes, V.; Olivier, Y.; Cornil, J.; Nys, J. P. et al. Estimation of π—π electronic couplings from current measurements. Nano Lett. 2017, 17, 3215–3224.

    CAS  Google Scholar 

  47. Abbou, J.; Demaille, C.; Druet, M.; Moiroux, J. Fabrication of submicrometer-sized gold electrodes of controlled geometry for scanning electrochemical-atomic force microscopy. Anal. Chem. 2002, 74, 6355–6363.

    CAS  Google Scholar 

Download references

Acknowledgements

This work has benefited from the facilities and expertise of the Mass Spectrometry platform of ICSN, Institut de Chimie des Substances Naturelle (Vincent Guérineau, CNRS, Gif-sur-Yvette, France, http://icsn.cnrs.fr).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nicolas Clément, Agnès Anne or Christophe Demaille.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chennit, K., Coffinier, Y., Li, S. et al. High-density single antibody electrochemical nanoarrays. Nano Res. 16, 5412–5418 (2023). https://doi.org/10.1007/s12274-022-5137-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-5137-1

Keywords

Navigation