Skip to main content
Log in

Bacteria-assisted delivery and oxygen production of nano-enzyme for potent radioimmunotherapy of cancer

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Tumor-targeting attenuated Salmonella could induce certain antitumor therapeutic effect through its proliferation characteristic and the consequent activated immune response, while host defense cells represented by neutrophils would trap and eliminate these invading bacteria via producing excess hydrogen peroxide (H2O2)-including reactive oxygen species in the bacteria-infected tumor, thereby impairing the efficacy of the bacteria treatment of tumor. Herein, we attempt to combine bacteria treatment and oxygen-dependent radioimmunotherapy of tumor through injection of neutrophil-targeted nano-catalase into the bacteria-treated mice for perfect tumor treatment outcome. Denatured albumin is used to coat catalase and deliver it to the neutrophils infiltrated in bacteria-infected tumor tissue. Taking advantage of the generating H2O2 by neutrophils, easily-diffused oxygen is produced and spread the whole tumor under the catalysis of nano-enzyme, leading to enhanced radiotherapy of hypoxic tumor cells. Moreover, the optimized tumor microenvironment, synergistically caused by potent immune-stimulation of bacteria, generating oxygen and tumor radiotherapy, would boost the antitumor immunity. This novel combination therapy strategy holds great promise to provide new ideas for future clinical cancer treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Seong, S. Y.; Matzinger, P. Hydrophobicity: An ancient damage-associated molecular pattern that initiates innate immune responses. Nat. Rev. Immunol. 2004, 4, 469–478.

    Article  CAS  Google Scholar 

  2. Amarante-Mendes, G. P.; Adjemian, S.; Branco, L. M.; Zanetti, L. C.; Weinlich, R.; Bortoluci, K. R. Pattern recognition receptors and the host cell death molecular machinery. Front. Immunol. 2018, 9, 2379.

    Article  Google Scholar 

  3. De Lorenzo, G.; Ferrari, S.; Cervone, F.; Okun, E. Extracellular DAMPs in plants and mammals: Immunity, tissue damage and repair. Trends Immunol. 2018, 39, 937–950.

    Article  CAS  Google Scholar 

  4. Kono, H.; Rock, K. L. How dying cells alert the immune system to danger. Nat. Rev. Immunol. 2008, 8, 279–289.

    Article  CAS  Google Scholar 

  5. Hernandez, C.; Huebener, P.; Schwabe, R. F. Damage-associated molecular patterns in cancer: A double-edged sword. Oncogene 2016, 35, 5931–5941.

    Article  CAS  Google Scholar 

  6. Gontero, P.; Bohle, A.; Malmstrom, P. U.; O’Donnell, M. A.; Oderda, M.; Sylvester, R.; Witjes, F. The role of bacillus Calmette-Guérin in the treatment of non-muscle-invasive bladder cancer. Eur. Urol. 2010, 57, 410–429.

    Article  Google Scholar 

  7. Raja, J.; Ludwig, J. M.; Gettinger, S. N.; Schalper, K. A.; Kim, H. S. Oncolytic virus immunotherapy: Future prospects for oncology. J. Immunother. Cancer 2018, 6, 140.

    Article  Google Scholar 

  8. Yang, Z. J.; Zhu, Y. J.; Dong, Z. L.; Hao, Y.; Wang, C. J.; Li, Q. G.; Wu, Y. M.; Feng, L. Z.; Liu, Z. Engineering bioluminescent bacteria to boost photodynamic therapy and systemic anti-tumor immunity for synergistic cancer treatment. Biomaterials 2021, 281, 121332.

    Article  Google Scholar 

  9. Toso, J. F.; Gill, V. J.; Hwu, P.; Marincola, F. M.; Restifo, N. P.; Schwartzentruber, D. J.; Sherry, R. M.; Topalian, S. L.; Yang, J. C.; Stock, F. et al. Phase I study of the intravenous administration of attenuated Salmonella typhimurium to patients with metastatic melanoma. J. Clin. Oncol. 2002, 20, 142–152.

    Article  Google Scholar 

  10. Wall, D. M.; Srikanth, C. V.; McCormick, B. A. Targeting tumors with Salmonella typhimurium-potential for therapy. Oncotarget 2010, 1, 721–728.

    Article  Google Scholar 

  11. Zhou, S. B.; Gravekamp, C.; Bermudes, D.; Liu, K. Tumour-targeting bacteria engineered to fight cancer. Nat. Rev. Cancer 2018, 18, 727–743.

    Article  CAS  Google Scholar 

  12. Bjarnsholt, T.; Whiteley, M.; Rumbaugh, K. P.; Stewart, P. S.; Jensen, P. Ø., Frimodt-Møller, N. The importance of understanding the infectious microenvironment. Lancet Infect. Dis. 2022, 22, e88–e92.

    Article  CAS  Google Scholar 

  13. Westphal, K.; Leschner, S.; Jablonska, J.; Loessner, H.; Weiss, S. Containment of tumor-colonizing bacteria by host neutrophils. Cancer Res. 2008, 68, 2952–2960.

    Article  CAS  Google Scholar 

  14. Winterbourn, C. C.; Kettle, A. J.; Hampton, M. B. Reactive oxygen species and neutrophil function. Annu. Rev. Biochem. 2016, 85, 765–792.

    Article  CAS  Google Scholar 

  15. Galdiero, M. R.; Garlanda, C.; Jaillon, S.; Marone, G.; Mantovani, A. Tumor associated macrophages and neutrophils in tumor progression. J. Cell. Physiol. 2013, 228, 1404–1412.

    Article  CAS  Google Scholar 

  16. Chu, D. F.; Dong, X. Y.; Zhao, Q.; Gu, J. K.; Wang, Z. J. Photosensitization priming of tumor microenvironments improves delivery of nanotherapeutics via neutrophil infiltration. Adv. Mater. 2017, 29, 1701021.

    Article  Google Scholar 

  17. Mohanty, T.; Fisher, J.; Bakochi, A.; Neumann, A.; Cardoso, J. F. P.; Karlsson, C. A. Q.; Pavan, C.; Lundgaard, I.; Nilson, B.; Reinstrup, P. et al. Neutrophil extracellular traps in the central nervous system hinder bacterial clearance during pneumococcal meningitis. Nat. Commun. 2019, 10, 1667.

    Article  Google Scholar 

  18. Mi, Z.; Guo, L. N.; Liu, P.; Qi, Y.; Feng, Z. C.; Liu, J. H.; He, Z. H.; Yang, X.; Jiang, S. N.; Wu, J. Z. et al. “Trojan horse” Salmonella enabling tumor homing of silver nanoparticles via neutrophil infiltration for synergistic tumor therapy and enhanced biosafety. Nano Lett. 2020, 21, 414–423.

    Article  Google Scholar 

  19. Chen, X. F.; Song, J. B.; Chen, X. Y.; Yang, H. H. X-ray-activated nanosystems for theranostic applications. Chem. Soc. Rev. 2019, 48, 3073–3101.

    Article  CAS  Google Scholar 

  20. Fan, W. P.; Tang, W.; Lau, J.; Shen, Z. Y.; Xie, J.; Shi, J. L.; Chen, X. Y. Breaking the depth dependence by nanotechnology-enhanced X-ray-excited deep cancer theranostics. Adv. Mater. 2019, 31, 1806381.

    Article  Google Scholar 

  21. Liu, Y.; Dong, Y. P.; Kong, L.; Shi, F.; Zhu, H.; Yu, J. M. Abscopal effect of radiotherapy combined with immune checkpoint inhibitors. J. Hematol. Oncol. 2018, 11, 104.

    Article  Google Scholar 

  22. Arina, A.; Gutiontov, S. I.; Weichselbaum, R. R. Radiotherapy and immunotherapy for cancer: From “systemic” to “multisite”. Clin. Cancer Res. 2020, 26, 2777–2782.

    Article  CAS  Google Scholar 

  23. Rockwell, S.; Dobrucki, I. T.; Kim, E. Y.; Marrison, S. T.; Vu, V. T. Hypoxia and radiation therapy: Past history, ongoing research, and future promise. Curr. Mol. Med. 2009, 9, 442–458.

    Article  CAS  Google Scholar 

  24. Grimes, D. R.; Partridge, M. A mechanistic investigation of the oxygen fixation hypothesis and oxygen enhancement ratio. Biomed. Phys. Eng. Express 2015, 1, 045209.

    Article  Google Scholar 

  25. Dai, Y. L.; Xu, C.; Sun, X. L.; Chen, X. Y. Nanoparticle design strategies for enhanced anticancer therapy by exploiting the tumour microenvironment. Chem. Soc. Rev. 2017, 46, 3830–3852.

    Article  CAS  Google Scholar 

  26. Chen, H. C.; Tian, J. W.; He, W. J.; Guo, Z. J. H2O2-activatable and O2-evolving nanoparticles for highly efficient and selective photodynamic therapy against hypoxic tumor cells. J. Am. Chem. Soc. 2015, 137, 1539–1547.

    Article  CAS  Google Scholar 

  27. Song, X. J.; Xu, J.; Liang, C.; Chao, Y.; Jin, Q. T.; Wang, C.; Chen, M. W.; Liu, Z. Self-supplied tumor oxygenation through separated liposomal delivery of H2O2 and catalase for enhanced radio-immunotherapy of cancer. Nano Lett. 2018, 18, 6360–6368.

    Article  CAS  Google Scholar 

  28. Zhang, R.; Song, X. J.; Liang, C.; Yi, X.; Song, G. S.; Chao, Y.; Yang, Y.; Yang, K.; Feng, L. Z.; Liu, Z. Catalase-loaded cisplatin-prodrug-constructed liposomes to overcome tumor hypoxia for enhanced chemo-radiotherapy of cancer. Biomaterials 2017, 138, 13–21.

    Article  CAS  Google Scholar 

  29. Xu, B. L.; Cui, Y.; Wang, W. W.; Li, S. S.; Lyu, C. L.; Wang, S.; Bao, W. E.; Wang, H. Y.; Qin, M.; Liu, Z. et al. Immunomodulation-enhanced nanozyme-based tumor catalytic therapy. Adv. Mater. 2020, 32, 2003563.

    Article  CAS  Google Scholar 

  30. Wang, W. Q.; Jin, Y. L.; Liu, X.; Chen, F. M.; Zheng, X. H.; Liu, T. Q.; Yang, Y. M.; Yu, H. J. Endogenous stimuli-activatable nanomedicine for immune theranostics for cancer. Adv. Funct. Mater. 2021, 31, 2100386.

    Article  CAS  Google Scholar 

  31. Wang, Z. J.; Li, J.; Cho, J.; Malik, A. B. Prevention of vascular inflammation by nanoparticle targeting of adherent neutrophils. Nat. Nanotechnol. 2014, 9, 204–210.

    Article  CAS  Google Scholar 

  32. Yang, Z. Z.; Du, Y. T.; Sun, Q.; Peng, Y. W.; Wang, R. D.; Zhou, Y.; Wang, Y. Q.; Zhang, C. L.; Qi, X. R. Albumin-based nanotheranostic probe with hypoxia alleviating potentiates synchronous multimodal imaging and phototherapy for glioma. ACS Nano 2020, 14, 6191–6212.

    Article  CAS  Google Scholar 

  33. Chu, D. F.; Gao, J.; Wang, Z. J. Neutrophil-mediated delivery of therapeutic nanoparticles across blood vessel barrier for treatment of inflammation and infection. ACS Nano 2015, 9, 11800–11811.

    Article  CAS  Google Scholar 

  34. Segal, A. W.; Abo, A. The biochemical basis of the NADPH oxidase of phagocytes. Trends Biochem. Sci. 1993, 18, 43–47.

    Article  CAS  Google Scholar 

  35. Niesel, K.; Schulz, M.; Anthes, J.; Alekseeva, T.; Macas, J.; Salamero-Boix, A.; Möckl, A.; Oberwahrenbrock, T.; Lolies, M.; Stein, S. et al. The immune suppressive microenvironment affects efficacy of radio-immunotherapy in brain metastasis. EMBO Mol. Med. 2021, 13, e13412.

    Article  CAS  Google Scholar 

  36. Wang, W. G.; Xu, H. H.; Ye, Q. S.; Tao, F.; Wheeldon, I.; Yuan, A.; Hu, Y. Q.; Wu, J. H. Systemic immune responses to irradiated tumours via the transport of antigens to the tumour periphery by injected flagellate bacteria. Nat. Biomed. Eng. 2022, 6, 44–53.

    Article  CAS  Google Scholar 

  37. Duong, M. T. Q.; Qin, Y. S.; You, S. H.; Min, J. J. Bacteria-cancer interactions: Bacteria-based cancer therapy. Exp. Mol. Med. 2019, 51, 1–15.

    Article  CAS  Google Scholar 

  38. Borregaard, N. What doesn’t kill you makes you stronger: The antiinflammatory effect of neutrophil respiratory burst. Immunity 2014, 40, 1–2.

    Article  CAS  Google Scholar 

  39. Rolas, L.; Makhezer, N.; Hadjoudj, S.; El-Benna, J.; Djerdjouri, B.; Elkrief, L.; Moreau, R.; Périanin, A. Inhibition of mammalian target of rapamycin aggravates the respiratory burst defect of neutrophils from decompensated patients with cirrhosis. Hepatology 2013, 57, 1163–1171.

    Article  CAS  Google Scholar 

  40. Forman, H. J.; Torres, M. Reactive oxygen species and cell signaling: Respiratory burst in macrophage signaling. Am. J. Respir. Crit. Care. Med. 2002, 166, S4–S8.

    Article  Google Scholar 

  41. McCoy, K. D.; Ronchi, F.; Geuking, M. B. Host-microbiota interactions and adaptive immunity. Immunol. Rev. 2017, 279, 63–69.

    Article  CAS  Google Scholar 

  42. Saccheri, F.; Pozzi, C.; Avogadri, F.; Barozzi, S.; Faretta, M.; Fusi, P.; Rescigno, M. Bacteria-induced gap junctions in tumors favor antigen cross-presentation and antitumor immunity. Sci. Transl. Med. 2010, 2, 44ra57.

    Article  Google Scholar 

  43. Caamaño, J.; Hunter, C. A. NF-κB family of transcription factors: Central regulators of innate and adaptive immune functions. Clin. Microbiol. Rev. 2002, 15, 414–429.

    Article  Google Scholar 

  44. Duque, G. A.; Descoteaux, A. Macrophage cytokines: Involvement in immunity and infectious diseases. Front. Immunol. 2014, 5, 491.

    Google Scholar 

  45. Riboldi, E.; Porta, C.; Morlacchi, S.; Viola, A.; Mantovani, A.; Sica, A. Hypoxia-mediated regulation of macrophage functions in pathophysiology. Int. Immunol. 2013, 25, 67–75.

    Article  CAS  Google Scholar 

  46. Pan, Y. Y.; Yu, Y. D.; Wang, X. J.; Zhang, T. Tumor-associated macrophages in tumor immunity. Front. Immunol. 2020, 11, 583084.

    Article  CAS  Google Scholar 

  47. Chen, J. W.; Liang, C.; Song, X. J.; Yi, X.; Yang, K.; Feng, L. Z.; Liu, Z. Hybrid protein nano-reactors enable simultaneous increments of tumor oxygenation and iodine-131 delivery for enhanced radionuclide therapy. Small 2019, 15, 1903628.

    Article  CAS  Google Scholar 

  48. Zhang, C. Y.; Dong, X. Y.; Gao, J.; Lin, W. J.; Liu, Z.; Wang, Z. J. Nanoparticle-induced neutrophil apoptosis increases survival in sepsis and alleviates neurological damage in stroke. Sci. Adv. 2019, 5, eaax7964.

    Article  CAS  Google Scholar 

  49. Gao, J.; Wang, S. H.; Wang, Z. J. High yield, scalable and remotely drug-loaded neutrophil-derived extracellular vesicles (EVs) for anti-inflammation therapy. Biomaterials 2017, 135, 62–73.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the National Natural Science Foundation of China (Nos. 32171382, U1932208 U2032134, and 31900986), the Project of State Key Laboratory of Radiation Medicine and Protection, Soochow University (No. GZK1202110), and the Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jie Chen, Xuan Yi or Kai Yang.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ni, J., Zhou, H., Gu, J. et al. Bacteria-assisted delivery and oxygen production of nano-enzyme for potent radioimmunotherapy of cancer. Nano Res. 15, 7355–7365 (2022). https://doi.org/10.1007/s12274-022-4369-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4369-4

Keywords

Navigation