Skip to main content
Log in

Co-delivery of TRAIL and paclitaxel by fibronectin-targeting liposomal nanodisk for effective lung melanoma metastasis treatment

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Melanoma is a highly aggressive cancer which often forms metastatic tumors in the lung, leading to sharply reduced patients’ survival rate. Effectively treating these tumors thus could improve late stage melanoma with lung metastasis. In this study, we fabricated a Cys-Arg-Glu-Lys-Ala with N-methylated Glu (CR(NMe)EKA) decorated disk shaped nano vehicle to co-deliver tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and paclitaxel (PTX) to lung melanoma tumor sites (TRAIL-[ND-PTX]CR(NMe)EKA). These nanodisks displayed better tumor-targeting and penetration capability than spherical nanoparticles, while the fibronectin-targeting CR(NMe)EKA motif also increased the tumor accumulation of loaded drugs. The combined usage of TRAIL and PTX both killed tumor cells and reduced local nutrition supply, leading to stronger overall anti-tumor effect. This TRAIL-[ND-PTX]CR(NMe)EKA system performed remarkably better than free paclitaxel and also significantly elongated survival rate of melanoma lung metastasis bearing mice, without displaying significant toxicity. Hence, this designing strategy and the fabricated nanoplatform possess potential for further development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. McArthur, G. A.; Chapman, P. B.; Robert, C.; Larkin, J.; Haanen, J. B.; Dummer, R.; Ribas, A.; Hogg, D.; Hamid, O.; Ascierto, P. A. et al. Safety and efficacy of vemurafenib in BRAFV600E and BRAFV600K mutation-positive melanoma (BRIM-3): Extended follow-up of a phase 3, randomised, open-label study. Lancet Oncol. 2014, 15, 323–332.

    Article  CAS  Google Scholar 

  2. Long, Y.; Lu, Z. Z.; Mei, L.; Li, M.; Ren, K. B.; Wang, X. H.; Tang, J. J.; Zhang, Z. R.; He, Q. Enhanced melanoma-targeted therapy by “fru-blocked” phenyboronic acid-modified multiphase antimetastatic micellar nanoparticles. Adv. Sci. 2018, 5, 1800229.

    Article  Google Scholar 

  3. Mohme, M.; Riethdorf, S.; Pantel, K. Circulating and disseminated tumour cells—mechanisms of immune surveillance and escape. Nat. Rev. Clin. Oncol. 2017, 14, 155–167.

    Article  CAS  Google Scholar 

  4. Peinado, H.; Zhang, H. Y.; Matei, I. R.; Costa-Silva, B.; Hoshino, A.; Rodrigues, G.; Psaila, B.; Kaplan, R. N.; Bromberg, J. F.; Kang, Y. B. et al. Pre-metastatic niches: Organ-specific homes for metastases. Nat. Rev. Cancer 2017, 17, 302–317.

    Article  CAS  Google Scholar 

  5. Huang, R. L.; Teo, Z.; Chong, H. C.; Zhu, P. C.; Tan, M. J.; Tan, C. K.; Lam, C. R. I.; Sng, M. K.; Leong, D. T. W.; Tan, S. M. et al. ANGPTL4 modulates vascular junction integrity by integrin signaling and disruption of intercellular VE-cadherin and claudin-5 clusters. Blood 2011, 118, 3990–4002.

    Article  CAS  Google Scholar 

  6. Tichet, M.; Prod’Homme, V.; Fenouille, N.; Ambrosetti, D.; Mallavialle, A.; Cerezo, M.; Ohanna, M.; Audebert, S.; Rocchi, S.; Giacchero, D. et al. Tumour-derived SPARC drives vascular permeability and extravasation through endothelial VCAM1 signalling to promote metastasis. Nat. Commun. 2015, 6, 6993.

    Article  CAS  Google Scholar 

  7. Smith, H. A.; Kang, Y. B. Determinants of organotropic metastasis. Ann. Rev. Cancer Biol. 2017, 1, 403–423.

    Article  Google Scholar 

  8. Jemal, A.; Bray, F.; Center, M. M.; Ferlay, J.; Ward, E.; Forman, D. Global cancer statistics. CA A Cancer J. Clin. 2011, 61, 69–90.

    Article  Google Scholar 

  9. Wang, L. Y.; Zhou, B. J.; Huang, S. Q.; Qu, M. K.; Lin, Q.; Gong, T.; Huang, Y.; Sun, X.; He, Q.; Zhang, Z. R. et al. Novel fibronectin-targeted nanodisk drug delivery system displayed superior efficacy against prostate cancer compared with nanospheres. Nano Res. 2019, 12, 2451–2459.

    Article  CAS  Google Scholar 

  10. Füredi, A.; Szebényi, K.; Tóth, S.; Cserepes, M.; Hámori, L.; Nagy, V.; Karai, E.; Vajdovich, P.; Imre, T.; Szabó, P. et al. Pegylated liposomal formulation of doxorubicin overcomes drug resistance in a genetically engineered mouse model of breast cancer. J. Control. Release 2017, 261, 287–296.

    Article  Google Scholar 

  11. Duesberg, P.; Li, R. H.; Sachs, R.; Fabarius, A.; Upender, M. B.; Hehlmann, R. Cancer drug resistance: The central role of the karyotype. Drug Res. Updates 2007, 10, 51–58.

    Article  CAS  Google Scholar 

  12. Giantonio, B. J.; Catalano, P. J.; Meropol, N. J.; O’Dwyer, P. J.; Mitchell, E. P.; Alberts, S. R.; Schwartz, M. A.; Benson III, A. R. Bevacizumab in combination with oxaliplatin, fluorouracil, and leucovorin (FOLFOX4) for previously treated metastatic colorectal cancer: Results from the eastern cooperative oncology group study E3200. J. Clin. Oncol. 2007, 25, 1539–1544.

    Article  CAS  Google Scholar 

  13. Gradishar, W. J.; Meza, L. A.; Amin, B.; Samid, D.; Hill, T.; Chen, Y. M.; Lower, E. E.; Marcom, P. K. Capecitabine plus paclitaxel as front-line combination therapy for metastatic breast cancer: A multicenter phase II study. J. Clin. Oncol. 2004, 22, 2321–2327.

    Article  CAS  Google Scholar 

  14. Jiang, H. H.; Kim, T. H.; Lee, S.; Chen, X. Y.; Youn, Y. S.; Lee, K. C. PEGylated TNF-related apoptosis-inducing ligand (TRAIL) for effective tumor combination therapy. Biomaterials 2011, 32, 8529–8537.

    Article  CAS  Google Scholar 

  15. Pitti, R. M.; Marsters, S. A.; Ruppert, S.; Donahue, C. J.; Moore, A.; Ashkenazi, A. Induction of apoptosis by Apo-2 ligand, a new member of the tumor necrosis factor cytokine family. J. Biol. Chem. 1996, 271, 12687–12690.

    Article  CAS  Google Scholar 

  16. Liao, P. C.; Lieu, C. H. Cell cycle specific induction of apoptosis and necrosis by paclitaxel in the leukemic U937 cells. Life Sci. 2005, 76, 1623–1639.

    Article  CAS  Google Scholar 

  17. Seol, J. Y.; Park, K. H.; Hwang, C. I.; Park, W. Y.; Yoo, C. G.; Kim, Y. W.; Han, S. K.; Shim, Y. S.; Lee, C. T. Adenovirus-TRAIL can overcome TRAIL resistance and induce a bystander effect. Cancer Gene Ther. 2003, 10, 540–548.

    Article  CAS  Google Scholar 

  18. Shankar, S.; Srivastava, R. K. Enhancement of therapeutic potential of TRAIL by cancer chemotherapy and irradiation: Mechanisms and clinical implications. Drug Res. Updates 2004, 7, 139–156.

    Article  CAS  Google Scholar 

  19. Huang, S. Q.; Zhang, Y. C.; Wang, L. Y.; Liu, W.; Xiao, L. Y.; Lin, Q.; Gong, T.; Sun, X.; He, Q.; Zhang, Z. R. et al. Improved melanoma suppression with target-delivered TRAIL and Paclitaxel by a multifunctional nanocarrier. J. Control. Release 2020, 325, 10–24.

    Article  CAS  Google Scholar 

  20. Srivastava, R. K. TRAIL/Apo-2L: Mechanisms and clinical applications in cancer. Neoplasia 2001, 3, 535–546.

    Article  CAS  Google Scholar 

  21. LeBlanc, H. N.; Ashkenazi, A. Apo2L/TRAIL and its death and decoy receptors. Cell Death Differ. 2003, 10, 66–75.

    Article  CAS  Google Scholar 

  22. Hu, Q. Y.; Sun, W. J.; Lu, Y.; Bomba, H. N.; Ye, Y. Q.; Jiang, T. Y.; Isaacson, A. J.; Gu, Z. Tumor microenvironment-mediated construction and deconstruction of extracellular drug-delivery depots. Nano Lett. 2016, 16, 1118–1126.

    Article  CAS  Google Scholar 

  23. Griffith, T. S.; Lynch, D. H. TRAIL: A molecule with multiple receptors and control mechanisms. Curr. Opin. Immunol. 1998, 10, 559–563.

    Article  CAS  Google Scholar 

  24. Ashkenazi, A.; Dixit, V. M. Apoptosis control by death and decoy receptors. Curr. Opin. Cell Biol. 1999, 11, 255–260.

    Article  CAS  Google Scholar 

  25. Jain, R. K.; Di Tomaso, E.; Duda, D. G.; Loeffler, J. S.; Sorensen, A. G.; Batchelor, T. T. Angiogenesis in brain tumours. Nat. Rev. Neurosci. 2007, 8, 610–622.

    Article  CAS  Google Scholar 

  26. Bozzuto, G.; Molinari, A. Liposomes as nanomedical devices. Int. J. Nanomed. 2015, 10, 975–999.

    Article  CAS  Google Scholar 

  27. Allen, T. M. Liposomes. Drugs 1997, 54, 8–14.

    Article  CAS  Google Scholar 

  28. Torchilin, V. P. Recent advances with liposomes as pharmaceutical carriers. Nat. Rev. Drug Discov. 2005, 4, 145–160.

    Article  CAS  Google Scholar 

  29. Wayne, E. C.; Chandrasekaran, S.; Mitchell, M. J.; Chan, M. F.; Lee, R. E.; Schaffer, C. B.; King, M. R. TRAIL-coated leukocytes that prevent the bloodborne metastasis of prostate cancer. J. Controlled Release 2016, 223, 215–223.

    Article  CAS  Google Scholar 

  30. Chauhan, V. P.; Popović, Z.; Chen, O.; Cui, J.; Fukumura, D.; Bawendi, M. G.; Jain, R. K. Fluorescent nanorods and nanospheres for real-time in vivo probing of nanoparticle shape-dependent tumor penetration. Angew. Chem., Int. Ed. 2011, 50, 11417–11420.

    Article  CAS  Google Scholar 

  31. Park, J. H.; von Maltzahn, G.; Zhang, L. L.; Derfus, A. M.; Simberg, D.; Harris, T. J.; Ruoslahti, E.; Bhatia, S. N.; Sailor, M. J. Systematic surface engineering of magnetic nanoworms for in vivo tumor targeting. Small 2009, 5, 694–700.

    Article  CAS  Google Scholar 

  32. Liu, Z.; Cai, W. B.; He, L. N.; Nakayama, N.; Chen, K.; Sun, X. M.; Chen, X. Y.; Dai, H. J. In vivo biodistribution and highly efficient tumour targeting of carbon nanotubes in mice. Nat. Nanotechnol. 2007, 2, 47–52.

    Article  CAS  Google Scholar 

  33. Geng, Y.; Dalhaimer, P.; Cai, S. S.; Tsai, R.; Tewari, M.; Minko, T.; Discher, D. E. Shape effects of filaments versus spherical particles in flow and drug delivery. Nat. Nanotechnol. 2007, 2, 249–255.

    Article  CAS  Google Scholar 

  34. Wang, H.; Wang, S. L.; Wang, R. F.; Wang, X. Y.; Jiang, K.; Xie, C.; Zhan, C. Y.; Wang, H.; Lu, W. Y. Co-delivery of paclitaxel and melittin by glycopeptide-modified lipodisks for synergistic anti-glioma therapy. Nanoscale 2019, 11, 13069–13077.

    Article  CAS  Google Scholar 

  35. Gao, J.; Xie, C.; Zhang, M. F.; Wei, X. L.; Yan, Z. Q.; Ren, Y. C.; Ying, M.; Lu, W. Y. RGD-modified lipid disks as drug carriers for tumor targeted drug delivery. Nanoscale 2016, 8, 7209–7216.

    Article  CAS  Google Scholar 

  36. Zhang, W. P.; Sun, J.; Liu, Y.; Tao, M. Y.; Ai, X. Y.; Su, X. N.; Cai, C. F.; Tang, Y. L.; Feng, Z.; Yan, X. D. et al. PEG-stabilized bilayer nanodisks as carriers for doxorubicin delivery. Mol. Pharmaceutics 2014, 11, 3279–3290.

    Article  CAS  Google Scholar 

  37. Yeh, C. Y.; Hsiao, J. K.; Wang, Y. P.; Lan, C. H.; Wu, H. C. Peptide-conjugated nanoparticles for targeted imaging and therapy of prostate cancer. Biomaterials 2016, 99, 1–15.

    Article  CAS  Google Scholar 

  38. Wang, L. Y.; Qu, M. K.; Huang, S. Q.; Fu, Y.; Yang, L. Q.; He, S. S.; Li, L.; Zhang, Z. R.; Lin, Q.; Zhang, L. A novel α-enolase-targeted drug delivery system for high efficacy prostate cancer therapy. Nanoscale 2018, 10, 13673–13683.

    Article  CAS  Google Scholar 

  39. Bae, Y. H.; Park, K. Targeted drug delivery to tumors: Myths, reality and possibility. J. Control. Release 2011, 153, 198–205.

    Article  CAS  Google Scholar 

  40. Wong, K. M.; Horton, K. J.; Coveler, A. L.; Hingorani, S. R.; Harris, W. P. Targeting the tumor stroma: The biology and clinical development of pegylated recombinant human hyaluronidase (PEGPH20). Curr. Oncol. Rep. 2017, 19, 47.

    Article  Google Scholar 

  41. Barbazán, J.; Alonso-Alconada, L.; Elkhatib, N.; Geraldo, S.; Gurchenkov, V.; Glentis, A.; van Niel, G.; Palmulli, R.; Fernández, B.; Viaño, P. et al. Liver metastasis is facilitated by the adherence of circulating tumor cells to vascular fibronectin deposits. Cancer Res. 2017, 77, 3431–3441.

    Article  Google Scholar 

  42. Zhou, Z. X.; Qutaish, M.; Han, Z.; Schur, R. M.; Liu, Y. Q.; Wilson, D. L.; Lu, Z. R. MRI detection of breast cancer micrometastases with a fibronectin-targeting contrast agent. Nat. Commun. 2015, 6, 7984.

    Article  CAS  Google Scholar 

  43. Gocheva, V.; Naba, A.; Bhutkar, A.; Guardia, T.; Miller, K. M.; Li, C. M. C.; Dayton, T. L.; Sanchez-Rivera, F. J.; Kim-Kiselak, C.; Jailkhani, N. et al. Quantitative proteomics identify Tenascin-C as a promoter of lung cancer progression and contributor to a signature prognostic of patient survival. Proc. Natl. Acad. Sci. USA 2017, 114, E5625–E5634.

    Article  CAS  Google Scholar 

  44. Zhao, J. J.; Zhang, B.; Shen, S.; Chen, J.; Zhang, Q. Z.; Jiang, X. G.; Pang, Z. Q. CREKA peptide-conjugated dendrimer nanoparticles for glioblastoma multiforme delivery. J. Colloid Interface Sci. 2015, 450, 396–403.

    Article  CAS  Google Scholar 

  45. Simberg, D.; Duza, T.; Park, J. H.; Essler, M.; Pilch, J.; Zhang, L. L.; Derfus, A. M.; Yang, M.; Hoffman, R. M.; Bhatia, S. et al. Biomimetic amplification of nanoparticle homing to tumors. Proc. Natl. Acad. Sci. USA 2007, 104, 932–936.

    Article  Google Scholar 

  46. Jiang, K. J.; Song, X.; Yang, L. Q.; Li, L.; Wan, Z. Y.; Sun, X.; Gong, T.; Lin, Q.; Zhang, Z. R. Enhanced antitumor and anti-metastasis efficacy against aggressive breast cancer with a fibronectin-targeting liposomal doxorubicin. J. Control. Release 2017, 271, 21–30.

    Article  Google Scholar 

  47. Zhou, Z. X.; Wu, X. M.; Kresak, A.; Griswold, M.; Lu, Z. R. Peptide targeted tripod macrocyclic Gd(III) chelates for cancer molecular MRI. Biomaterials 2013, 34, 7683–7693.

    Article  CAS  Google Scholar 

  48. Song, X.; Wan, Z. Y.; Chen, T. J.; Fu, Y.; Jiang, K. J.; Yi, X. L.; Ke, H.; Dong, J. X.; Yang, L. Q.; Li, L. et al. Development of a multi-target peptide for potentiating chemotherapy by modulating tumor microenvironment. Biomaterials 2016, 108, 44–56.

    Article  CAS  Google Scholar 

  49. Wang, H.; Wang, X. Y.; Xie, C.; Zhang, M. F.; Ruan, H. T.; Wang, S. L.; Jiang, K.; Wang, F.; Zhan, C. Y.; Lu, W. Y. et al. Nanodisk-based glioma-targeted drug delivery enabled by a stable glycopeptide. J. Control. Release 2018, 284, 26–38.

    Article  CAS  Google Scholar 

  50. Gao, Y. J.; Zhou, Y. X.; Zhao, L.; Zhang, C.; Li, Y. S.; Li, J. W.; Li, X. R.; Liu, Y. Enhanced antitumor efficacy by cyclic RGDyK-conjugated and paclitaxel-loaded pH-responsive polymeric micelles. Acta Biomater. 2015, 23, 127–135.

    Article  CAS  Google Scholar 

  51. Jiang, T. Y.; Mo, R.; Bellotti, A.; Zhou, J. P.; Gu, Z. Gel-liposomemediated co-delivery of anticancer membrane-associated proteins and small-molecule drugs for enhanced therapeutic efficacy. Adv. Funct. Mater. 2014, 24, 2295–2304.

    Article  CAS  Google Scholar 

  52. Loi, M.; Becherini, P.; Emionite, L.; Giacomini, A.; Cossu, I.; Destefanis, E.; Brignole, C.; Di Paolo, D.; Piaggio, F.; Perri, P. et al. sTRAIL coupled to liposomes improves its pharmacokinetic profile and overcomes neuroblastoma tumour resistance in combination with Bortezomib. J. Control. Release 2014, 192, 157–166.

    Article  CAS  Google Scholar 

  53. Zhou, F. Y.; Feng, B.; Yu, H. J.; Wang, D. G.; Wang, T. T.; Ma, Y. T.; Wang, S. L.; Li, Y. P. Tumor microenvironment-activatable prodrug vesicles for nanoenabled cancer chemoimmunotherapy combining immunogenic cell death induction and CD47 Blockade. Adv. Mater. 2019, 31, 1805888.

    Article  Google Scholar 

  54. Li, S. Y.; Cheng, H.; Qiu, W. X.; Zhang, L.; Wan, S. S.; Zeng, J. Y.; Zhang, X. Z. Cancer cell membrane-coated biomimetic platform for tumor targeted photodynamic therapy and hypoxia-amplified bioreductive therapy. Biomaterials 2017, 142, 149–161.

    Article  CAS  Google Scholar 

  55. Felber, A. E.; Dufresne, M. H.; Leroux, J. C. pH-sensitive vesicles, polymeric micelles, and nanospheres prepared with polycarboxylates. Adv. Drug Deliv. Rev. 2012, 64, 979–992.

    Article  CAS  Google Scholar 

  56. Sharma, G.; Modgil, A.; Layek, B.; Arora, K.; Sun, C. W.; Law, B.; Singh, J. Cell penetrating peptide tethered bi-ligand liposomes for delivery to brain in vivo: Biodistribution and transfection. J. Control. Release 2013, 167, 1–10.

    Article  CAS  Google Scholar 

  57. Jang, B.; Park, J. Y.; Tung, C. H.; Kim, I. H.; Choi, Y. Gold nanorod-photosensitizer complex for near-infrared fluorescence imaging and photodynamic/photothermal therapy in vivo. ACS Nano 2011, 5, 1086–1094.

    Article  CAS  Google Scholar 

  58. Shi, K. R.; Li, J. P.; Cao, Z. L.; Yang, P.; Qiu, Y.; Yang, B.; Wang, Y.; Long, Y.; Liu, Y. Y.; Zhang, Q. Y. A pH-responsive cell-penetrating peptide-modified liposomes with active recognizing of integrin αvβ3 for the treatment of melanoma. J. Control. Release 2015, 217, 138–150.

    Article  CAS  Google Scholar 

  59. Lammers, T.; Kiessling, F.; Hennink, W. E.; Storm, G. Drug targeting to tumors: Principles, pitfalls and (pre-) clinical progress. J. Control. Release 2012, 161, 175–187.

    Article  CAS  Google Scholar 

  60. Maruyama, K. Intracellular targeting delivery of liposomal drugs to solid tumors based on EPR effects. Adv. Drug Deliv. Rev. 2011, 63, 161–169.

    Article  CAS  Google Scholar 

  61. Pluen, A.; Netti, P. A.; Jain, R. K.; Berk, D. A. Diffusion of macromolecules in agarose gels: Comparison of linear and globular configurations. Biophys. J. 1999, 77, 542–552.

    Article  CAS  Google Scholar 

  62. Deen, W. M.; Bohrer, M. P.; Epstein, N. B. Effects of molecular size and configuration on diffusion in microporous membranes. AIChE J. 1981, 27, 952–959.

    Article  CAS  Google Scholar 

  63. Joensuu, K.; Leidenius, M.; Kero, M.; Andersson, L. C.; Horwitz, K. B.; Heikkilä, P. eR, pR, HeR2, Ki-67 and cK5 in early and Late Relapsing Breast cancer—Reduced cK5 expression in Metastases. Breast Cancer Basic Clini. Res. 2013, 7, 23–34.

    Google Scholar 

  64. Urruticoechea, A.; Smith, I. E.; Dowsett, M. Proliferation marker Ki-67 in early breast cancer. J. Clin. Oncol. 2005, 23, 7212–7220.

    Article  CAS  Google Scholar 

  65. Agemy, L.; Sugahara, K. N.; Kotamraju, V. R.; Gujraty, K.; Girard, O. M.; Kono, Y.; Mattrey, R. F.; Park, J. H.; Sailor, M. J.; Jimenez, A. I. et al. Nanoparticle-induced vascular blockade in human prostate cancer. Blood 2010, 116, 2847–2856.

    Article  CAS  Google Scholar 

  66. Al-Jamal, K. T.; Al-Jamal, W. T.; Wang, J. T. W.; Rubio, N.; Buddle, J.; Gathercole, D.; Zloh, M.; Kostarelos, K. Cationic poly-L-lysine dendrimer complexes doxorubicin and delays tumor growth in vitro and in vivo. ACS Nano 2013, 7, 1905–1917.

    Article  CAS  Google Scholar 

  67. Xu, Z. H.; Wang, Y. H.; Zhang, L.; Huang, L. Nanoparticle-delivered transforming growth factor-β siRNA enhances vaccination against advanced melanoma by modifying tumor microenvironment. ACS Nano 2014, 8, 3636–3645.

    Article  CAS  Google Scholar 

  68. Gaggioli, C.; Sahai, E. Melanoma invasion-current knowledge and future directions. Pigment Cell Res. 2007, 20, 161–172.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Regional Innovation and Development Joint Fund (No. U20A20441) and the National Science Fund for Excellent Young Scholars (No. 82022070).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhirong Zhang or Ling Zhang.

Electronic Supplementary Material

12274_2021_3553_MOESM1_ESM.pdf

Co-delivery of TRAIL and paclitaxel by fibronectin-targeting liposomal nanodisk for effective lung melanoma metastasis treatment

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, S., Deng, L., Zhang, H. et al. Co-delivery of TRAIL and paclitaxel by fibronectin-targeting liposomal nanodisk for effective lung melanoma metastasis treatment. Nano Res. 15, 728–737 (2022). https://doi.org/10.1007/s12274-021-3553-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3553-2

Keywords

Navigation